Как влияет температура на растения. Презентация на тему: «Действие экстремальных температур на растения. Влияние на растения низких температур. Зимний покой, стратификация, яровизация. Морозостойкость, зимостойкость, процессы закалки и изнеживания растени

Влияние температуры воздуха

Процессы жизнедеятельности у каждого вида растений осуществляются при определенном тепловом режиме, который зависит от качества тепла и продолжительности его воздействия.

Разные растения нуждаются в разном количестве теплоты и обладают различной способностью переносить отклонения (как в сторону понижения, так и повышения) температуры от оптимальной.

Оптимальная температура - наиболее благоприятная температура для определенного вида растения в определенной стадии развития.

Максимальная и минимальная температуры, не нарушающие нормального развития растений, определяют пределы температур, допустимых для их выращивания в соответствующих условиях. Понижение температуры приводит к замедлению всех процессов, сопровождается ослаблением фотосинтеза, торможением образования органических веществ, дыхания, транспирации. Повышение температуры активизирует эти процессы.

Отмечено, что интенсивность фотосинтеза растет с повышением температуры и достигает максимума в области 15-20℃ для растений умеренных широт и 25-30℃ для тропических и субтропических растений. Суточная температура осенью в интерьерах почти не опускается ниже 13℃. Зимой она находится в пределах 15-21℃. Весной колебания температур возрастают. Она достигает 18-25℃. В летнее время температура держится относительно высокой в течение суток и составляет 22-28℃. Как видно, температура воздуха в помещениях почти укладывается в диапазон температур, необходимых для протекания процесса фотосинтеза на протяжении всего года. Температура, таким образом, не является столь лимитирующим фактором в комнатных условиях, как интенсивность освещения.



В зимний период комнатные питомцы нормально себя чувствуют при более низких температурах, т.к. многие из них находятся в состоянии покоя, а у других ростовые процессы замедляются либо временно прекращаются. Поэтому потребность в тепле снижается по сравнению с летней.

Влияние света на рост растений – фотоморфогенез. Влияние красного и дальнего красного света на рост растений

Фотоморфогенез - это процессы, происходящие в растении под влиянием света различного спектрального состава и интенсивности. В них свет выступает не как первичный источник энергии, а как сигнальное средство, регулирующее процессы роста и развития растения. Можно провести некую аналогию с уличным светофором , автоматически регулирующим дорожное движение. Только для управления природа выбрала не "красный - желтый -зеленый", а другой набор цветов: "синий - красный - дальний красный".

И первое проявление фотоморфогенеза возникает в момент прорастания семени.
Про строение семени и особенности прорастания я уже рассказывал в статье про рассаду . Но там были опущены подробности, связанные с сигнальным действием света.Восполним же этот пробел.

Итак, семя проснулось от спячки и начало прорастать, находясь при этом под слоем почвогрунта, т.е в темноте . Замечу сразу, что мелкие семена, посеянные поверхностно и не присыпанные ничем, тоже прорастают в темноте ночью.
Кстати, по моим наблюдениям, вообще вся раасада, стоящая в светлом месте, прорастает ночью и увидеть массовые всходы можно утром.
Но вернемся к нашему несчастному проклюнувшемуся семени. Проблема заключается в том, что даже появившись на поверхность почвы, росток об этом не знает и продолжает активно расти, тянуться к свету, к жизни, пока не получит специального сигнала : стоп , можно дальше не спешить, ты уже на свободе и будешь жить. (Мне кажется, люди не сами придумали красный стоп-сигнал для водителей, а украли его у природы...:-).
И такой синал он получает не от воздуха, не от влаги, не от механического воздействия, а от кратковременного светового излучения, содержащего красную часть спектра.
А до получения такого сигнала проросток находится в так называемом этиолированном состоянии. В котором он имеет бледный вид и крючковатую согбенную форму. Крючок - это вышедший наружу эпикотиль или гипокотиль, нужный для защиты почечки (точки роста) при продирании через тернии к звездам, и он сохранится, если рост продолжится в темноте и растение будет оставаться в этом этиолированном состоянии.

Прорастание

Свет играет чрезвычайно важную роль в развитии растений. Изменения морфологии растения под воздействием светового излучения называется фотоморфогенезом. После прорастания семени сквозь грунт первые лучи солнца вызывают радикальные изменения у нового растения.

Известно, что под воздействием красного света процесс прорастания семян активизируется, а под воздействием дальнего красного света подавляется. Синий свет также подавляет прорастание. Такая реакция характерна для видов с мелкими семенами, так как у мелких семян нет достаточного запаса питательных веществ, чтобы обеспечить рост в темноте при прохождении толщи земли. Мелкие семена прорастают только под воздействием красного света, пропускаемого тонким слоем земли, при этом достаточно всего лишь кратковременного облучения - 5-10 минут в сутки. Увеличение толщины почвенного слоя приводит к обогащению спектра дальним красным светом, который подавляет прорастание семени. У видов растений с крупными семенами, содержащими достаточный запас питательных веществ, для индукции прорастания свет не требуется.

В норме из семечка сначала прорастает корешок, а затем появляется побег. После этого, по мере увеличения ростка (как правило, под воздействием света), развиваются вторичные корни и побеги. Такой скоординированный прогресс является ранним проявлением феномена взаимосвязанного роста, когда развитие корневой системы влияет на рост побега и наоборот. В большей степени этими процессами управляют гормоны.

В отсутствие света росток пребывает в так называемом этиолированном состоянии, при этом имеет бледный вид и крючковатую форму. Крючок - это вышедший наружу эпикотиль или гипокотиль, нужный для защиты точки роста при прорастании сквозь почву, и он сохранится, если рост продолжится в темноте.

Красный свет

Почему это происходит - еще немного теории. Оказывается, кроме хлорофилла, в любом растении есть еще один замечательный пигмент, имеющий название - фитохром . (Пигмент - это белок, имеющий избирательную чувствительность к определенному участку спектра белого света).
Особенность фитохрома заключается в том, что он может принимать две формы с разными свойствами под воздействием красного света (660 нм) и дальнего красного света (730 нм), т.е. он обладает способностью к фотопревращению . Причем поочередное кратковременное освещение тем или другим красным светом аналогично манипулированию любым выключателем, имеющим положение "ВКЛ-ВЫКЛ", т.е. всегда сохраняется результат последнего воздействия.
Это свойство фитохрома обеспечивает слежение за временем суток (утро-вечер), управляя периодичностью жизнедеятельности растения. Более того, светолюбивость или теневыносливость того или иного растения также зависит от особенностей имеющихся в нем фитохромов. И, наконец, самое главное - цветением растений также управляет... фитохром ! Но об этом - в следующий раз.

А пока вернемся все же к нашему проростку (ну почему ему так не везет...) Фитохром, в отличие от хлорофилла, есть не только в листьях, но и в семени . Участие фитохрома в процессе прорастания семян для некоторых видов растений таково: просто красный свет стимулирует процессы прорастания семян, а дальний красный - подавляет прорастание семян. (Возможно, что именно поэтому семена и прорастают ночью). Хотя, это и не является закономерностью для всех растений. Но в любом случае, красный спект более полезен (он стимулирует), чем дальний красный, который подавляет активность жизненных процессов.

Но предположим, что нашему семечку повезло и оно проросло, появившись на поверхности в этиолированном виде. Теперь достаточно кратковременного освещения проростка, чтобы запустить процесс деэтиоляции : скорость роста стебля снижается, крючок распрямляется, начинается синтез хлорофилла, семядоли начинают зеленеть.
И все это, благодаря красному свету. В солнечном дневном свете обычных красных лучей больше, чем дальних красных, поэтому днем высока активность растения, а ночью оно переходит в неактивную форму.

Как же различить эти два близких участка спектра "на глаз" для источника искуственного освещения? Если вспомнить, что красный участок граничит с инфракрасным, т.е. тепловым излучением, то можно предположить, что чем теплее "на ощупь" излучение, тем больше в нем инфракрасных лучей, а значит и дальнего красного света. Подставьте руку под обычную лампочку накаливания или под люминесцентную лампу дневного света - и почувствуете разницу.

Рост растении возможен в сравнительно широком диапазоне температур и определяется географическим происхождением данного вида. Требования растения к температуре меняются с возрастом, различны у отдельных органов растения (листья, корни, плодоэлементы и др.). Для роста большинства сельскохо­зяйственных растений России нижняя температурная граница соответствует температуре замерзания клеточного сока (около -1...-3 °С), а верхняя - коагуляции белков протоплазмы (около 60 "С). Вспомним, что температура влияет на биохимические процессы дыхания, фотосинтеза и других метаболических систем растений, а графики зависимости роста растений и активности ферментов от температуры близки по форме (колоколообразная кривая).

Температурные оптимумы для роста. Для появления всходов требуется более высокая температура, чем для прорастания семян (табл. 22).

22. Потребность семян полевых культур в биологически минимальных температурах (по В. Н. Степанову)

Температура, "С

прорастання семян 1 появления всходов

Горчица, конопля, рыжик 0-1 2-3

Рожь, пшеница, ячмень, овес, 1-2 4-5

горох, вика, чечевица, чина

Лен, гречиха, люпин, бобы, 3-4 5-6

нуг, свекла, сафлор

Подсолнечник, перилла 5-6 7-8

Кукуруза, просо, соя 8-10 10-11

Фасоль, клещевина, сорго 10-12 12-15

Х-волчатник, рис, кунжут 12-14 14-15

При анализе роста растений выделяют три кардинальные тем­пературные точки: минимальную (рост только начинается), оп­тимальную (наиболее благоприятная для роста) и максимальную температуру (рост прекращается).

Различают растения тешолюбивые- с минимальными тем­пературами для роста более 10 "С и оптимальными 30-35 "С (кукуруза, огурец, дыня, тыква), холодостойкие - с минималь­ными температурами для роста в пределам 0-5 "С н оптималь­ными 25-31 "С. Максимальные температуры для большинства растений 37-44 "С, для южных 44-50 "С. При увеличении температуры на 10 °С в зоне оптимальных значений скорость роста увеличивается в 2-3 раза. Повышение температуры выше оптимальной замедляет рост и сокращает его период. Опти­мальная температура для роста корневых систем ниже, чем для надземных органов. Оптимум для роста выше, чем для фото­синтеза.

Можно предположить, что при высокой температуре имеет место недостаток АТФ и НАДФН, необходимых для восстанови­тельных процессов, что вызывает торможение роста. Температу­ра, оптимальная для роста, может быть неблагоприятной для развития растения. Оптимум для роста меняется на протяжении вегетационного периода и в течение суток, что объясняется за­крепленной в геноме растений потребностью к смене темпера­тур, имевшей место на исторической родине растений. Многие растения интенсивнее растут в ночной период суток.

Термопериодизм. Росту многих растений благоприятствуем смена температуры в течение суток: днем повышенная, а ночью пониженная. Так, для растений томата оптимальная температур_) днем 26 "С, а ночью 17-19 _С. Это явление Ф. Вент (1957) назвал термопериоднзмом. Термопериодии! - реакция растение) на периодическую смену повышенных и пониженных температур, выражающаяся в изменении процессов роста и развитие! (М. *. Чайлахян, 1982). Различают суточный и сезонный термо­периоднзм. Для тропических растений разница между дневными и ночными температурами составляет 3-6 °С, для растений уме­ренного пояса - 5-7 "С. Это важно учитывать при выращивании растений в поле, теплицах и фитотронах, районировании культур и сортов сельскохозяйственных растений.

Чередование высоких и низких температур служит регулятора?__ внутренних часов растений, как п фотопе1_иодизм. Относи­тельно низкие ночные температуры повышают унижай картофеля (Ф. Вент. 1959), сахаристость корнеплолок сахарной свеклы, ус­коряют рост корневой системы н боковых побегов * растений томата (Н. И. Якушкмна, 1980). Низкие температуры, возможно, повышают активность ферментов, осуществляющих гидролиз) крахмала в листьях, а образующиеся растворимые формы углево­дов передвигаются в корни н боковые побеги.

Влияет на растения, изменяет скорость роста и развития, поглощения, усвоения и передвижения воды и элементов минерального питания и синтеза органических соединений. Температура почвы определяет темпы прорастания семян, а также степень активизации полезных и фитопатогенных микроорганизмов, повреждающих семена и снижающих полевую всхожесть. Культуры сильно различаются по диапазону температуры, при которой прорастают семена.
Семенам салата, шпината, пастернака и лука свойственно холодное прорастание. Они начинают прорастать при температуре тающего льда (0°С). Процесс прорастания, как и становления проростка, идет очень долго — соответственно 21...65 и 49...136 дней. Разные культуры сильно различаются и по верхней температурной границе прорастания семян. Так, при температуре выше 25 °С не прорастают семена салата, выше 30 °С — шпината и пастернака, выше 35 °С — моркови, кукурузы, томата, перца, фа-соли.
С повышением температуры увеличивается до определенного предела скорость прорастания семян и появления всходов. У верхней температурной границы прорастания семян и становления сеянцев у лука, моркови, томата и спаржи она снижается.
Прорастание семени, то есть образование корешка, имеет более низкий температурный минимум, чем рост подсемядольного колена, с которым связан выход проростка на поверхность почвы. Так, семена спаржи начинают прорастать при 5 °С, а всходы появляются при 10 °С и выше, но лучше при 20...25 °С. У фасоли, перца и бамии семена прорастают при 10 °С, а сеянец образуется при 15 °С. В зоне экстремальных температур корни не всех проросших семян образуют корневые волоски, что сказывается на их поглощающей способности, и не все проросшие семена дают всходы, то есть снижается полевая всхожесть.
Особенно сильно снижается полевая всхожесть при посеве в холодную почву у теплотребовательных культур, что в значительной степени связано с активизацией почвенных патогенов. Повысить полевую всхожесть можно протравливанием и закаливанием семян, дезинфекцией почвы.
Корневые системы овощных культур имеют более низкие темпе-ратурные оптимумы, чем надземная часть растений, но диапазон их толерантности значительно уже, то есть они менее холодо- и жаростойки. Корневые системы более болезненно, чем надземные, реагируют на резкие колебания температуры, что часто бывает в гидропонной культуре и при выращивании контейнерной рассады.
Понижение температуры почвы уменьшает поступление воды у теплотребовательных культур (физиологическая засуха), что происходит при поливе плантаций огурца и бахчевых культур холодной водой. В жаркую погоду дефицит влаги часто приводит к гибели посевов. У северных границ культуры огурца нередки случаи гибели посевов в жаркие дни, наступившие после дождей, сопровождавшихся значительным снижением температуры воздуха и почвы.
Влияние пониженной температуры почвы проявляется в степени поглощения элементов минерального питания, особенно фосфора, а часто и азота вследствие ослабления деятельности нитрифицирующих бактерий. Особенно сильно фосфорная недостаточность на холодных почвах ощущается у томата, когда температура опускается ниже 15 °С.
Температура субстрата сказывается не столько на поглощении элементов минерального питания, сколько на передвижении их в надземную систему.
Температура почвы определяет степень активизации почвенных патогенов и устойчивость к ним растений. При низкой температуре почвы (0...10 °С) активизируются грибы из родов Pythium и Rhizoctonia, поражающие семена, проростки и растения, особенно теплолюбивых культур. При высокой температуре (20...30 °С) почвы опасность грозит от грибов из родов Fusarium и Verticillium. При температуре около 20 °С весьма вредоносна капустная кила.
Влияние температуры почвы реализуется в накоплении биомассы растений, размерах корневой и надземной систем, темпах роста и прохождения фенофаз. Температура почвы ниже оптимальной задерживает рост корней и надземной системы, ведет к уменьшению размеров листьев и всего растения, задерживает темпы наступления фенофаз. Растения огурца, томата слабее ветвятся и плодоносят. У огурца сортов Вязниковский и Муромский при температуре почвы 12... 14 °С в опытах наблюдалось полное отсутствие плодоношения. Растения цвели, но завязи не образовывали. При температуре 15...20 °С растения плодоносили нормально.
Оптимальная температура для образования клубней у картофеля 17...19 °С. При длительном пребывании в условиях низкой температуры (ниже 5 °С) у высаженных клубней не удается получить всходы, они образуют столоны с мелкими клубеньками (детками). При температуре 28 °С клубнеобразование прекращается.
Экстремально высокая температура почвы подавляет рост корневой и надземной систем, задерживает образование кочанов капусты, плодообразование у томата, огурца, перца. На уровне поверхности почвы, где температура особенно высокая, часто отмирает флоэма стебля, что приводит к гибели растений.

Выполнила: Галимова А.Р

Действие экстремальных температур на растения

В ходе эволюции растения довольно хорошо адаптировались к воздействию низких и высоких температур. Однако эти приспособления не столь совершенны, поэтому крайние экстремальные температуры могут вызвать те или иные повреждения и даже гибель растения. Диапазон температур, действующих в природе на растения, достаточно широк: от -77ºС до + 55°С, т.е. составляет 132°С. Наиболее благоприятными для жизни большинства наземных организмов являются температуры +15 - +30°С.

Высокие температуры

Жаростойкие - главным образом низшие растения, например, термофильные бактерии и сине-зеленые водоросли.

Эта группа организмов способна выдерживать повышение температуры до 75-90°С;

Устойчивость растений к низким температурам подразделяют на:

Холодостойкость;

Морозоустойчивость.

Холодостойкость растений

способность теплолюбивых растений переносить низкие положительные температуры. Теплолюбивые растения сильно страдают при положительных пониженных температурах. Внешними симптомами страдания растений являются увядание листьев, появление некротических пятен.

Морозоустойчивость

способность растений переносить отрицательные температуры. Двулетние и многолетние растения, растущие в умеренной полосе, периодически подвергаются воздействию низких отрицательных температур. Разные растения обладают неодинаковой устойчивостью к этому воздействию.

Морозоустойчивые растения

Влияние на растения низких температур

При быстром понижении температуры образование льда происходит внутри клетки При постепенном снижении температуры кристаллы льда образуются в первую очередь в межклетниках. Гибель клетки и организма в целом может происходить в результате того, что образовавшиеся в межклетниках кристаллы льда, оттягивая воду из клетки, вызывают ее обезвоживание и одновременно оказывают на цитоплазму механическое давление, повреждающее клеточные структуры. Это вызывает ряд последствий – потерю тургора, повышение концентрации клеточного сока, резкое уменьшение объема клеток, сдвиг значений рН в неблагоприятную сторону.

Влияние на растения низких температур

Плазмалемма теряет полупроницаемость. Нарушается работа ферментов, локализованных на мембранах хлоропластов и митохондрий, и связанные с ними процессы окислительного и фотосинтетического фосфорилирования. Интенсивность фотосинтеза снижается, уменьшается отток ассимилятов. Именно изменение свойств мембран является первой причиной повреждения клеток. В некоторых случаях повреждение мембран наступает при оттаивании. Таким образом, если клетка не прошла процесса закаливания, цитоплазма свертывается из-за совместного влияния обезвоживания и механического давления образовавшихся в межклетниках кристаллов льда.

Адаптации растений к отрицательным температурам

Существуют два типа приспособлений к действию отрицательных температур:

уход от повреждающего действия фактора (пассивная адаптация)

повышение выживаемости (активная адаптация).

потребности растений

Температура воздуха существенно влияет на комнатные растения, как и на любые другие живые организмы Земли. Большинство домашних растений родом из тропиков или субтропиков. В наших широтах их содержат в теплицах, где поддерживают специальный микроклимат. Эти факты могут заставить ошибочно полагать, что для всех комнатных цветов необходимо поддерживать высокую температуру воздуха.


На самом деле лишь небольшая часть растений может расти в наших квартирах при повышенной температуре (более 24°С). Это объясняется тем, что наши условия ощутимо отличаются от естественной среды обитания большей сухостью, а также меньшей интенсивностью и длительностью освещения. Поэтому для комфортного роста комнатных растений в домашних условиях нужно сделать поправку и на температуру воздуха, которая должна быть ниже, чем у них на родине.



1. Тепловой режим для комнатных растений

Как температура влияет на растения?

Температурный режим измеряется количеством тепла и продолжительностью воздействия определённой температуры. Для комнатных растений существуют минимальные и максимальные границы температур, в пределах которых происходит их нормальное развитие (т.н. температурный диапазон).


Холодный воздух приводит к замедлению физиологических и биохимических процессов - уменьшению интенсивности фотосинтеза, дыхания, выработки и распределения органических веществ. С повышением температуры эти процессы активизируются.

Естественные колебания температуры

Ритмические изменения количества тепла происходят как в течение суток (смена дня и ночи), так и в течение года (смена времён года). Растения приспособились к подобным колебаниям, которые существуют в местах их естественного произрастания. Так, обитатели тропиков отрицательно реагируют на резкие смены температур, а жители умеренных широт могут переносить их значительные колебания. Более того, в холодный период у них наступает период покоя, который необходим для их дальнейшего активного развития.


При большой разнице летних и зимних, дневных и ночных температур (широком температурном диапазоне) лучше всего выращивать фикусы, алое, кливию, сансевьеру и аспидистру.


Общее правило: ночью должно быть прохладнее, чем днём на 2-3°С.

Оптимальная температура

Для нормального роста тропических красивоцветущих и декоративно-лиственных растений необходима температура в пределах 20-25°С (для всех ароидных, бегониевых, бромелиевых, тутовых и др.). Растения рода пеперомия, колеус, санхеция и др. лучше всего развиваются при 18-20°С. Жителям субтропиков (зебрина, фатсия, плющ, аукуба, тетрастигма и др.) будет комфортно при 15-18°С.


Самыми требовательными к теплу являются тропические пёстролистные растения - кордилина, кодиэум, каладиум и др.


Зимние температуры и период покоя

Зимой некоторым растениям нужна прохлада, т.к. у них замедляют процесс роста или они находятся в состоянии покоя. Например, для эвкалиптов и рододендронов зимой желательна температура 5-8°С, для гортензии, примулы, цикламена и пеларгонии - около 10-15°С.


Другой пример. Чтобы заставить такие растения, как антуриум Шерцера, аспарагус Шпренгера и спатифилюм Валлиса цвети ещё более интенсивно, осенью во время периода покоя, температуру воздуха снижают до 15-18°С, а в январе повышают до 20-22°С.


Частой причиной отсутствия цветения является несоблюдение естественного ритма жизни растений - их периода покоя.


Например, кактусы, которые зимой при умеренной температуре и регулярных поливах дают уродливые приросты и перестают цвести. Гиппеаструмы перестают закладывать бутоны, и ничем не могут порадовать, кроме как зелёными листьями.

Важна ли температура грунта?

Обычно температура земли в горшке на 1-2°С меньше, чем окружающего воздуха. Зимой необходимо следить, чтобы горшки с растениями не переохлаждались и не ставить их близко к оконному стеклу. При переохлаждении грунта, корни начинают плохо усваивать воду, что приводит к их гниению и гибели растения. Лучшим решением будет пробковый коврик, деревянная, пенопластовая или картонная подставка под горшками.


Например, для такого растения, как диффенбахия, температура субстрата должна быть в пределах 24-27°С. А таким, как гардения, фикусы, эухарис, которые любят тёплый грунт, можно наливать тёплую воду в поддоны.


2. Группы растений по отношению к теплу

Растения для прохладных мест (10-16°С)

К ним можно отнести такие растения, как азалия, олеандр, пеларгония, аспидистра, фикусы, традесканция, розы, фуксия, первоцветы, аукуба, камнеломка, плющи, циперус, хлорофитум, араукария, аспарагус, драцена, бегония, бальзамин, бромелиевые, каланхое, колеус, маранта, папоротники, шефлера, филодендрон, хойя, пеперомия, спатифилюм и др..

Растения для умеренно тёплых мест (17-20°С)

При умеренной температуре будут хорошо развиваться антуриум, клеродендрон, сенполия, плющ восковой, панданусы, синингия, монстера, пальма Ливистона, кокосовая пальма, афеландра, гинура, рео, пилея

Теплолюбивые растения (20-25°С)

В тепле наиболее комфортно чувствуют себя: аглаонема, диффенбахия, калатея, кодиэум, орхидеи, каладиум, сингониум, дизиготека, акалифа и др.. (читайте информацию отдельно по каждому растению)

Растения, которые пребывают в состоянии покоя (5-8°С)

Группа растений, которым нужен отдых и понижение температуры в зимнее время: суккуленты, лавр, рододендрон, фатсия, хлорофитум и др..


3. Несоблюдение теплового режима

Скачки температуры

Очень вредны внезапные понижения температуры, особенно более чем на 6°С. Например, при снижении температуры до 10°С у диффенбахии пятнистой начинают желтеть и отмирать листья; при 15°С сциндапсус золотистый перестаёт расти.


Как правило, резкие скачки температуры вызывают быстрое пожелтение и опадание листьев. Поэтому, если вы проветриваете комнату в зимнее время, постарайтесь убрать с подоконника все комнатные растения.

Слишком низкая температура

При слишком низкой температуре растения долго не цветут или образуют недоразвитые цветки, листья сворачиваются, приобретают тёмный цвет и отмирают. Исключения могут составить лишь суккуленты, в том числе кактусы, которые приспособлены к высокой дневной и низкой ночной температуре.


Стоит учитывать то, что в холодное время года температура на подоконнике может быть меньше на 1-5°С.


Слишком высокая температура

Жаркий воздух зимой при недостатке света также отрицательно влияет на тропические растения. Особенно, если ночная температура выше дневной. В этом случае во время дыхания в ночное время происходит перерасход питательных веществ, накопленных во время фотосинтеза днём. Растение истощается, побеги становятся неестественно длинными, новые листья мельчают, старые засыхают и опадают.