Для чего нужны графы. Виды графов. Путеводитель по достопримечательностям мурманска

Тема графов — это интересная, полезная и пугающая тема. Теория графов — "Ужас студента". Алгоритмы на графах — потрясающий ум людей их открывших.

Что такое граф? Чтобы ответить на этот вопрос своим читателям, я буду описывать тему немного по-своему.
Граф — это множество объектов.
В большинстве задач это однотипные объекты. (Множество городов или множество домов, или множество людей, или множество чего-то ещё однотипного)

Чтобы решать задачи с таким множеством, нужно каждый объект из этого множества обозначить как что-то. Общепринято это самое что-то называть вершинами графа.

Описывать графы и основные определения удобно рисунками, поэтому для чтения этой страницы рисунки должны быть включены.

Как я и писал ранее — граф это какое-то множество объектов. Эти объекты обычно однотипны. Проще всего приводить пример на городах. Каждый из нас знает, что такое город и что такое дорога. Каждый из нас знает, что к городу могут быть дороги, а могут и не быть. В общем, любое множество объектов можно охарактеризовать как граф.

Если говорить о графе как о городах, то между городами могут быть проложены дороги, а может быть где-то разрушена, не построена, или же город вообще находится на острове, моста нет, а интересуют только дороги с твердым покрытием. Несмотря на то, что дороги к такому городу нет, этот город может быть включен во множество анализируемых объектов, и все объекты вместе взятые составляют совокупность объектов или проще говоря — граф.

Наверняка вы читали учебники и видели такую запись G(V,E) или что-то похожее. Так вот, V — это какой-то один объект из всего множества объектов. В нашем случае множество объектов — это города, следовательно, V — это какой-то определенный город. Так как объекты не обязательно города, а слово объект может запутать, то такой объект из множества можно называть точкой, пунктом, как-то еще, но чаще всего его называют вершиной графа и обозначают буквой V.
В программировании это обычно или столбец или строка двумерного массива, где массив называется или матрицей смежности или матрицей инцендентности.

В литературе, в интернете и вообще везде, где что-то написано о графах, вы будете встречать такие понятия, как дуги и ребра. На этом рисунке изображены ребра графа. Т.е. это три ребра Е1, Е2 и Е3.

Дуга и ребро отличаются тем, что ребро — это такая двунаправленная связь. Захотел, ушел к соседу, захотел, вернулся от соседа. Если не очень понятно, то можно представить дом, аэродром, летящий самолет и парашютиста. Парашютист может пойти из своего дома на аэродром, но когда пришел на аэродром, вспомнить, что свой счастливый парашют забыл дома, затем вернуться домой, взять парашют. — Такая дорога, по которой можно гулять туда и обратно, называется ребром.
Если парашютист находится в самолете и прыгает с самолета, но парашютист забыл в самолете надеть свой счастливый парашют, то сможет ли парашютист забрать что забыл? Такой путь, который идет только в одну сторону, называется дугой. Обычно говорят, что ребро соединяет две вершины, а дуга идет из одной вершины в другую.

На этом рисунке у графа одни только дуги. Дуги на графе обозначают стрелочками, потому как так ясно доступное направление. Если граф состоит из одних таких дуг, то такой граф называется ориентированным.


Вы часто будете встречать понятия смежности и инцендентности. На рисунке красным цветом отмечены два ребра, которые идут в одну точку. Такие ребра, как и вышеописанные вершины, тоже называются смежными.

Многое не описано, но эта часть информации может быть кому-то поможет.

Между элементами множества вершин и множества ребер определено отношение инцидентности. Говорят, что ребро е инцидентно вершинам v1, v2, если оно соединяет эти вершины и наоборот, каждая из вершин v1, v2 инцидентна ребру е.

Рассмотрим графическое представление графов таблица 1.

Таблица 1. Графическое представление графов

Многие результаты, полученные для простых графов, без труда модно перенести на более общие объекты, в которых две вершины могут быть соединены более чем одним ребром. Кроме того, часто бывает удобно снять ограничение, состоящее в том, что ребро должно соединять две различные вершины, и допустить существование петель. Получающийся при этом объект, в котором могут быть и кратные ребра и петли называется графом (псевдографом). Псевдограф без петель называется мультиграфом

Рассмотрим некоторые важные типы графов.

Определение. Граф, у которого множество ребер пусто, называется вполне несвязным (или пустым) графом. Вполне несвязный граф обозначают N

Заметим, что у вполне несвязного графа все вершины изолированы

Определение. Простой граф, в котором любые две вершины смежны, называется полным. Полный граф обозначают K

Заметим, что для полного графа выполняется равенство

где m - число ребер, n - число вершин графа.

Определение. Граф, у которого все вершины имеют одну и ту же локальную степень n, называется регулярным (или однородным) степени n.

Регулярные графы степени 3 называются кубическими (или трехвалентными).

Известным примером кубического графа является граф Петерсона

Среди регулярных графов особенно интересны так называемые платоновы графы - графы, образованные вершинами и ребрами пяти правильных многогранников - Платоновых тел: тетраэдра, куба, октаэдра, додекаэдра и икосаэдра.На рисунке 6 приведен граф, соответствующий кубу.

Определение. Допустим, что множество вершин графа G можно разбить на два непересекающихся подмножества V1 и V2 так, что каждое ребро в G соединяет какую-нибудь вершину из V1 с какой-нибудь вершиной из V2, тогда данный граф называется двудольным.

Двудольный граф можно определить и по-другому - в терминах раскраски его вершин двумя цветами, скажем красным и синим. При этом граф называется двудольным, если каждую его вершину можно окрасить красным или синим цветом так, чтобы каждое ребро имело один конец красный, а другой - синий.

Определение. Если в двудольном графе каждая вершина из V1 соединена с каждой вершиной из V2, то граф называется полным двудольным.

Заметим, что граф Кm. n имеет ровно m + n вершин и mn ребер.

Определение. Объединением графов

называется граф

Определение. Пересечением графов

называется граф

Определение. Соединением графов G1 и G2 является новый граф, у которого

а множеством ребер являются все ребра первого и второго графа и ребра, соединяющие между собой каждую вершину первого графа с первой вершиной второго графа.

Определение. Граф называется связным, если его нельзя представить в виде объединения двух графов, и несвязным в противном случае.

Очевидно, что всякий несвязный граф можно представить в виде объединения конечного числа связных графов - каждый из таких связных графов называется компонентой связности графа.

Определение. Связный регулярный граф степени 2 называется циклическим графом. Обозначается Сn .

Определение. Соединение графов N1 и Cn-1 (n3) называется колесом с n вершинами. Обозначается Wn (рисунок 10)

Определение. Дополнением простого графа G называется простой граф с множеством вершин V(G), в котором две вершины смежны тогда и только тогда, когда они не смежны в исходном графе.

Обозначение. Другими словами, дополнением графа является граф, содержащий все вершины исходного графа и только те ребра, которых не хватает исходному графу для того, чтобы он стал полным.

Определение. Подграфом графа G называется граф, все вершины и ребра которого содержатся среди вершин и ребер графа G. Подграф называется собственным, если он отличен от самого графа.

Текст работы размещён без изображений и формул.
Полная версия работы доступна во вкладке "Файлы работы" в формате PDF

ВВЕДЕНИЕ

«В математике следует помнить не формулы, а процесс мышления…»

Е. И. Игнатьев

Теория графов в настоящее время является интенсивно развивающимся разделом математики. Это объясняется тем, что в виде графовых моделей описываются многие объекты и ситуации, что очень важно для нормального функционирования общественной жизни. Именно этот фактор определяет актуальность их более подробного изучения. Поэтому тематика данной работы достаточно актуальна.

Цель исследовательской работы: выяснить особенности применения теории графов в различных областях знаний и при решении логических задач.

Цель определила следующие задачи:

    познакомиться с историей теории графов;

    изучить основные понятия теории графов и основные характеристики графов;

    показать практическое применение теории графов в различных областях знаний;

    рассмотреть способы решения задач с помощью графов и составить собственные задачи.

Объект исследования: сфера деятельности человека на предмет применения метода графов.

Предмет исследования: раздел математики «Теория графов».

Гипотеза. Мы предполагаем, что изучение теории графов может помочь учащимся решать логические задачи по математике, что определит их дальнейшие интересы.

Методы исследовательской работы:

В ходе нашего исследования были использованы такие методы, как:

1) Работа с различными источниками информации.

2) Описание, сбор, систематизация материала.

3) Наблюдение, анализ и сравнение.

4) Составление задач.

Теоретическая и практическая значимость данной работы определяется тем, что результаты могут быть использованы на информатике, математике, геометрии, черчении и классных часах, а также для широкого круга читателей, заинтересованных данной темой. Исследовательская работа имеет выраженную практическую направленность, так как в работе автором представлены многочисленные примеры применения графов во многих областях знаний, составлены свои задачи. Данный материал можно использовать на факультативных занятиях по математике.

ГЛАВА I. ТЕОРЕТИЧЕСКИЙ ОБЗОР МАТЕРИАЛА ПО ТЕМЕ ИССЛЕДОВАНИЯ

    1. Теория графов. Основные понятия

В математике «граф» можно изобразить в виде картинки, которая представляет собой некоторое количество точек, соединенных линиями. «Граф» происходит от латинского слова «графио» - пишу, как и известный дворянский титул.

В математике определение графа дается так:

Термин «граф» в математике определяется следующим образом:

Граф - это конечное множество точек - вершин , которые могут быть соединены линиями - ребрами .

В качестве примеров графов могут выступать чертежи многоугольников, электросхемы, схематичное изображение авиалиний, метро, дорог и т.п. Генеалогическое дерево также является графом, где вершинами служат члены рода, а родственные связи выступают в качестве ребер графа.

Рис. 1 Примеры графов

Число ребер, которое принадлежит одной вершине, называется степенью вершины графа . Если степень вершины нечетное число, вершина называется - нечетной . Если степень вершины число четное, то и вершина называется четной .

Рис. 2 Вершина графа

Нуль-граф - это граф, состоящий только из изолированных вершин, не соединенных ребрами.

Полный граф - это граф, каждая пара вершин которого соединена ребром. N-угольник, в котором проведены все диагонали, может служить примеров полного графа.

Если в графе выбрать такой путь, когда начальная и конечная точка совпадают, то такой путь называется циклом графа . Если прохождение через каждую вершину графа происходит не более одного раза, то цикл называется простым .

Если в графе каждые две вершины связаны ребром, то это связанный граф. Граф называется несвязанным , если в нем есть хотя бы одна пара несвязанных вершин.

Если граф связанный, но не содержит циклов, то такой граф называетсядеревом .

    1. Характеристики графов

Путь графа - это такая последовательность, в которой каждые два соседних ребра, имеющих одну общую вершину, встречаются только один раз.

Длина кратчайшей цепи из вершин a и b называется расстоянием между вершинами a и b.

Вершина а называется центром графа, если расстояние между вершиной а и любой другой вершиной является наименьшим и из возможных. Такое расстояние есть радиус графа.

Максимально возможное расстояние между двумя любыми вершинами графа называется диаметром графа.

Раскраска графов и применение.

Если внимательно посмотреть на географическую карту, то можно увидеть железные или шоссейные дороги, которые являются графами. Кроме этого на катре есть граф, который состоит из границ между странами (районами, областями).

В 1852 году английскому студенту Френсису Гутри поставили задачу раскрасить карту Великобритани, выделив каждое графство отдельным цветом. Из-за небольшого выбора красок Гутри использовал их повторно. Он подбирал цвета так, чтобы те графства, которые имеют общий участок границы, обязательно окрашивались в разные цвета. Возник вопрос, какое наименьшее количество красок необходимо для раскрашивания различных карт. Френсис Гутри предположил, хотя и не смог доказать, что четырех цветов будет достаточно. Эта проблема бурно обсуждалась в студенческих кругах, но позже была забыта.

«Проблема четырех красок» вызывала все больший интерес, но так и не была решена, даже выдающимися математиками. В 1890 году английским математиком Перси Хивудом было доказано, что для раскрашивания любой карты будет достаточно пяти красок. А только 1968 году смогли доказать, что для раскрашивания карты, на которой изображено меньше сорока стран, будет достаточно 4 цветов.

В 1976 году эта задача была решена при использовании компьютера двумя американскими математиками Кеннетом Аппелем и Вольфгантом Хакеном. Для ее решения все карты были поделены на 2000 типов. Для компьютера была создана программа, которая исследовала все типы с целью выяления таких карт, для раскрашивания которых будет недостаточно четырех красок. Только три типа карт компьютер исследовать не смог, поэтому математики изучали их самостоятельно. В результате было установлено, что для раскрашивания всех 2000 типов карт будет достаточно 4 красок. Им было объявлено о решении проблемы четырех красок. В этот день почтовое отделение при университете, в котором работали Аппель и Хакен на всех марках ставило штемпель со словами: «Четырех красок достаточно».

Можно представить задачу о четырех красках несколько иначе.

Для этого рассмотрим произвольную карту, представив ее виде графа: столицы государств являются вершинами графа, а ребра графа связывают те вершины (столицы), государства которых имеют общую границу. Для получения такого графа формулируется следующая задача - необходимо раскрасить граф с помощью четырех цветов так, чтобы вершины, имеющие общее ребро были раскрашены разными цветами.

Эйлеровы и Гамильтоновы графы

В 1859 году английским математиком Уильямом Гамильтоном была выпущена в продажу головоломка - деревянный додекаэдр (двенадцатигранник), двадцать вершин которого были обозначены гвоздиками. Каждая вершина имела название одного из крупнейших городов мира - Кантон, Дели, Брюссель, и т.д. Задача заключалась в нахождении замкнутого пути, который проходит по ребрам многогранника, побывав в каждой вершине только один раз. Для отмечания пути использовался шнур, который цепляли за гвоздики.

Гамильтоновым циклом называется граф, путь которого является простым циклом, который проходит через все вершины графа по одному разу.

На реке Прегель расположен город Калининград (бывший Кенигсберг). Река омывала два острова, которые между собой и с берегами были соединены мостами. Старых мостов сейчас уже нет. Память о них осталась только на карте города.

Однажды один житель города спросил у своего знакомого, можно ли пройти по всем мостам, побывать на каждом только один раз и вернуться к тому месту откуда началась прогулка. Эта задача заинтересовала многих горожан, но решить ее никто не смог. Этот вопрос вызвал заинтересованность ученных многих стран. Решение проблемы получил математик Леонард Эйлер. Кроме этого он сформулировал общий подход к решению таких задач. Для этого он превратил карту в граф. Вершинами этого графа стала суша, а ребрами - мосты, ее соединяющие.

При решении задачи про мосты Кенигсберга Эйлеру удалось сформулировать свойства графов.

    Начертить граф, начав движение с одной вершины и окончив в той же вершине одним росчерком (дважды не проводя по одной и той же линии и не отрывая карандаша от бумаги) возможно в том случае, если все вершины графа четные.

    Если есть граф с двумя нечетными вершинами, то его вершины тоже можно соединить одним росчерком. Для этого нужно начать с одной, а закончить на другой любой нечетной вершине.

    Если есть граф с числом нечетных вершин больше двух, то граф невозможно начертить одним росчерком.

Если применять эти свойства на задачу о мостах, то можно увидеть, что все вершины исследуемого графа нечетные, значит, этот граф нельзя соединить одним росчерком, т.е. невозможно пройти по всем мостам один раз и закончить путь в том месте, где он был начат.

Если граф имеет цикл (не обязательно простой), содержащий все рѐбра графа по одному разу, то такой цикл называется Эйлеровым циклом . Эйлерова цепь (путь, цикл, контур) — цепь (путь, цикл, контур), содержащая все рѐбра (дуги) графа по одному разу.

ГЛАВА II. ОПИСАНИЕ ИССЛЕДОВАНИЯ И ЕГО РЕЗУЛЬТАТЫ

2.1. Этапы проведения исследования

Для проверки гипотезы исследование включало три этапа (таблица 1):

Этапы исследования

Таблица 1.

Используемые методы

Теоретическое исследование проблемы

Изучить и проанализировать познавательную и научную литературу.

 самостоятельное размышление;

 изучение информационных источников;

 поиск необходимой литературы.

Практическое исследование проблемы

Рассмотреть и проанализировать области практического применения графов;

 наблюдение;

 анализ;

 сравнение;

 анкетирование.

3 этап. Практическое использование результатов

Обобщить изученную информацию;

 систематизация;

 отчет (устный, письменный, с демонстрацией материалов)

сентябрь 2017 г.

2.2. Области практического применения графов

Графы и информация

Теория информации широко использует свойства двоичных деревьев.

Например, если нужно закодировать некоторое число сообщений в виде определенных последовательностей нулей и единиц различной длины. Код считается наилучшим, для заданной вероятности кодовых слов, если средняя длина слов наименьшая в сравнении другими распределениями вероятности. Для решения такой задачи Хаффман предложил алгоритм, в котором, код представляется деревом-графом в рамках теории поиска. Для каждой вершины предлагается вопрос, ответом на который может быть либо, «да», либо «нет» - что соответствует двум ребрам, выходящим из вершины. Построение такого дерева завершается после установления того, что требовалось. Это может применяться в интервьюировании нескольких человек, когда заранее неизвестен ответ на предыдущий вопрос, план интервью представляется в виде двоичного дерева.

Графы и химия

Еще А. Кэли рассмотрел задачу о возможных структурах насыщенных (или предельных) углеводородов, молекулы которых задаются формулой:

CnH 2n+2

Все атомы углеводорода 4-хвалентны, все атомы водорода 1-валентны. Структурные формулы простейших углеводородов показаны на рисунке.

Каждую молекулу предельного углеводорода можно представить в виде дерева. При удалении всех атомов водорода, атомы углеводорода, которые остались, образуют дерево с вершинами, степень которых не выше четырех. Значит, количество возможных искомых структур (гомологов данного вещества) равняется числу деревьев, степени вершин которых, не больше 4. Это задача сводится к задаче о перечислении деревьев отдельного вида. Д. Пойа рассмотрел эту задачу и ее обобщения.

Графы и биология

Процесс размножения бактерий - это одна из разновидностей ветвящихся процессов, встречающихся в биологической теории. Пусть каждая бактерия по истечению определенного времени или погибает, или делится на две. Следовательно, для одной бактерии мы получим двоичное дерево размножения ее потомства. Вопрос задачи заключается в следующем, какое количество случаев содержит k потомков в n-м поколение одной бактерии? Данное соотношение в биологии носит название процесс Гальтона-Ватсона, которое обозначает необходимое количество нужных случаев.

Графы и физика

Сложная утомительная задача для любого радиолюбителя - создание печатных схем (пластина диэлектрика - изолирующего материала и вытравленные дорожки в виде металлических полосок). Пересечение дорожек происходит только в определенных точках (местах установления триодов, резисторов, диодов и пр.) по определенным правилам. В результате перед ученым стоит задача вычертить плоский граф, с вершинами в

Итак, все выше сказанное подтверждает практическую ценность графов.

Математика интернета

Интернет - всемирная система объединенных компьютерных сетей для хранения и передачи информации.

Сеть интернет можно представить в виде графа, где вершины графа - это интернет сайты, а ребра - это ссылки (гиперссылки), идущие с одних сайтов на другие.

Веб-граф (Интернет), имеющий миллиарды вершин и ребер, постоянно меняется - спонтанно добавляются и исчезают сайты, пропадают и добавляются ссылки. Однако, Интернет имеет математическую структуру, подчиняется теории графов и имеет несколько «устойчивых» свойств.

Веб-граф разрежен. Он содержит всего лишь в несколько раз больше ребер, чем вершин.

Несмотря на разреженность, интернет очень тесен. От одного сайта до другого по ссылкам, можно перейти за 5 - 6 кликов (знаменитая теория «шести рукопожатий»).

Как мы знаем, степень графа - это число ребер, которым принадлежит вершина. Степени вершин веб-графа распределены по определенному закону: доля сайтов (вершин) с большим количеством ссылок (ребер) мала, а сайтов с малым количеством ссылок - велика. Математически это можно записать так:

где - доля вершин определенной степени, - степень вершины, - постоянная, независящая от числа вершин веб-графа, т.е. не меняется в процессе добавления или удаления сайтов (вершин).

Этот степенной закон является универсальным для сложных сетей - от биологических до межбанковских.

Интернет как целое устойчив к случайным атакам на сайты.

Так как уничтожение и создание сайтов происходит независимо и с одинаковой вероятностью, то и веб-граф, с вероятность близкой к 1, сохраняет свою целостность и не разрушается.

Для изучения интернета необходимо строить модель случайного графа. Эта модель должна обладать свойствами реального интернета и не должна быть слишком сложной.

Эта задача пока полностью не решена! Решение этой задачи - построения качественной модели интернета - позволит разработать новые инструменты для улучшения поиска информации, выявления спама, распространения информации.

Построение биологических и экономических моделей началось значительно раньше, чем возникла задача построения математической модели интернета. Однако достижения в развитии и изучении интернета, позволили ответить на многие вопросы, касающиеся всех этих моделей.

Математика интернета востребована многими специалистами: биологами (предсказание роста популяций бактерий), финансистами (риски возникновения кризисов) и т.п. Изучение подобных систем - один из центральных разделов прикладной математики и информатики.

г. Мурманск с помощью графа.

Когда человек приезжает в новый для него город, как правило, первое желание - это посетить главные достопримечательности. Но при этом запас времени зачастую ограничен, а в случае деловой поездки, совсем мал. Следовательно, необходимо планировать знакомство с достопримечательностями заранее. И в построении маршрута отлично помогут графы!

В качестве примера рассмотрим типичный случай прибытия в Мурманск из аэропорта в первый раз. Планируется посетить следующие достопримечательности:

1. Морской православный храм Спас-на-водах;

2. Свято-Никольский собор;

3. Океанариум;

4. Памятник коту Семену;

5. Атомный ледокол Ленин;

6. Парк Огни Мурманска;

7. Парк Долина Уюта;

8. Кольский мост;

9. Музей истории Мурманского морского пароходства;

10. Площадь Пяти углов;

11. Морской торговый порт

Вначале расположим эти места на карте и получим наглядное представление о местоположении и расстоянии между достопримечательностями. Сеть дорог достаточно развита, и перемещение на автомобиле не будет затруднительным.

Достопримечательности на карте (слева) и полученный граф (справа) показаны на соответствующем рисунке ПРИЛОЖЕНИЯ №1. Таким образом, новоприбывший вначале проедет около Кольского моста(и, при желании может пересечь его туда - обратно); затем отдохнет в Парке Огни Мурманска и Долине Уюта и отправится дальше. В итоге оптимальный маршрут составит:

С помощью графа можно также визуализировать схему проведения соцопросов. Примеры представлены в ПРИЛОЖЕНИИ №2. В зависимости от данных ответов опрашиваемому задают разные вопросы. Например, если в социологическом опросе №1 опрашиваемый считает математику важнейшей из наук, у него спросят, уверенно ли он чувствует себя на уроках физики; если же он считает иначе, второй вопрос будет касаться востребованности гуманитарных наук. Вершинами такого графа являются вопросы, а ребрами - варианты ответов.

2.3. Применение теории графов при решении задач

Теория графов применяется при решении задач из многих предметных областей: математика, биология, информатика. Мы изучили принцип решения задач с помощью теории графов и составили собственные задачи по теме исследования.

Задача №1.

Пятеро одноклассников, на встрече выпускников, обменялись рукопожатиями. Сколько всего было сделано рукопожатий?

Решение: Обозначим одноклассников вершинами графа. Соединим каждую вершину линиями, с четырьмя другими вершинам. Получаем 10 линий, это и есть рукопожатиями.

Ответ: 10 рукопожатий (каждая линия означает одно рукопожатие).

Задача №2.

У моей бабушке в деревне, возле дома растут 8 деревьев: тополь, дуб, клен, яблоня, лиственница, береза, рябина и сосна. Рябина выше лиственницы, яблоня выше клена, дуб ниже березы, но выше сосны, сосна выше рябины, береза ниже тополя, а лиственница выше яблони. В какой последовательности расположатся деревья по высоте от самого высокого к самому низкому.

Решение:

Деревья - это вершины графа. Обозначим их первой буквой в кружочке. Проведем стрелки от низкого дерева к более высокому. Сказано, что рябина выше лиственницы, то стрелку ставим от лиственницы к рябине, берёза ниже тополя, то стрелку ставим от тополя к берёзе и т.п. Получаем граф, где видно, что самое низкое дерево - клен, потом яблоня, лиственница, рябина, сосна, дуб, береза и тополь.

Ответ: клен, яблоня, лиственница, рябина, сосна, дуб, береза и тополь.

Задача №3.

У Мамы есть 2 конверта: обычный и авиа, и 3 марки: квадратная, прямоугольная и треугольная. Сколькими способами Мама может выбрать конверт и марку, чтобы отправить письмо Папе?

Ответ: 6 способов

Задача №4.

Между населенными пунктами A, B, C, D, E построены дороги. Нужно определить длину кратчайшего пути между пунктами А и Е. Передвигаться можно только по дорогам, длина которых указана на рисунке.

Задача №5.

Тремя одноклассника - Максим, Кирилл и Вова решили заняться спортом и прошли отбор спортивные секции. Известно, что в баскетбольную секцию претендовал 1 мальчик, а в хоккей хотели играть трое. Максим пробовался только в 1 секцию, Кирилл отбирался во все три секции, а Вова в 2. Кого из мальчиков в какую спортивную секцию отобрали?

Решение: Для решения задачи применим графы

Баскетбол Максим

Футбол Кирилл

Хоккей Вова

Так как к баскетболу идет лишь одна стрелка, то Кирилла отобрали в сецию баскетбола . Тогда Кирилл не будет играть в хоккей , а значит, в хоккейную секцию отобрали Максима, который пробовался только в эту секцию, тогда Вова будет футболистом .

Задача №6.

Из-за болезни некоторых преподавателей, завучу школы, требуется составить фрагмент расписания занятий в школе хотя бы на один день, с учетом следующих обстоятельств:

1. Преподаватель ОБЖ согласен дать только последний урок;

2. Преподаватель географии может дать либо второй, либо третий урок;

3. Математик готов дать либо только первый, либо только второй урок;

4. Преподаватель физики может дать либо первый, либо второй, либо третий уроки, но только в одном классе.

Какое расписание может составить завуч школы, чтобы оно удовлетворяло всем преподавателей?

Решение: Эту задачу можно решить перебирая все возможные варианты, но проще, если начертить граф.

1. 1) физика 2. 1) математика 3. 1) математика

2) математика 2) физика 2) география

3) география 3) география 3) физика

4) ОБЖ 4) ОБЖ 4) ОБЖ

Заключение

В данной исследовательской работе была подробно изучена теория графов, доказана гипотеза, что изучение графов может помочь в решении логических задач, кроме того, рассмотрена теорию графов в разных областях науки и составлены свои 7 задач.

Использование графов при обучении обучающихся поиску решения задач позволяет совершенствовать графические умения учащихся и связывать рассуждения специальным языком конечного множества точек, некоторые из которых соединены линиями. Все это способствует проведению работы по обучению учащихся мышлению.

Эффективность учебной деятельности по развитию мышления во многом зависит от степени творческой активности учащихся при решении математических задач. Следовательно, необходимы математические задачи и упражнения, которые бы активизировали мыслительную деятельность школьников.

Применение задач и использованием элементов теории графов на факультативных занятиях в школе как раз и преследует цель активизации мыслительной деятельности учащихся. Мы считаем, что практический материал по нашему исследованию может быть полезен на факультативных занятиях по математике.

Таким образом, цель исследовательской работы достигнута, задачи решены. В перспективе мы планируем продолжить изучение теории графов и разработать свои маршруты, например, с помощью графа создать экскурсионный маршрут для школьного автобуса ЗАТО Александровск по музеям и памятным местам г. Мурманска.

СПИСОК ИСПОЛЬЗОВАННОЙ ЛИТЕРАТУРЫ

    Березина Л. Ю. «Графы и их применение» - М.: «Просвещение», 1979

    Гарднер М. «Математические досуги», М. «Мир», 1972

    Гарднер М. «Математические головоломки и развлечения», М. «Мир», 1971

    Горбачев А. «Сборник олимпиадных задач» - М. МЦНМО, 2005

    Зыков А. А. Основы теории графов. — М.: «Вузовская книга», 2004. — С. 664

    Касаткин В. Н. «Необычные задачи математики», Киев, «Радяньска школа», 1987

    Математическая составляющая / Редакторы-составители Н.Н. Андреев, С.П. Коновалов, Н.М. Панюшкин. - М.: Фонд «Математические этюды» 2015 г. - 151 с.

    Мельников О. И. «Занимательные задачи по теории графов», Мн. «ТетраСистемс»,2001

    Мельников О.И. Незнайка в стране графов: Пособие для учащихся. Изд. 3-е, стереотипное. М.: КомКнига, 2007. — 160 с.

    Олехник С. Н., Нестеренко Ю. В., Потапов М. К. «Старинные занимательные задачи», М. «Наука», 1988

    Оре О. «Графы и их применения», М. «Мир», 1965

    Харари Ф. Теория графов / Пер.с англ. и предисл. В. П. Козырева. Под ред. Г. П. Гаврилова. Изд. 2-е. - М.: Едиториал УРСС, 2003. - 296 с.

ПРИЛОЖЕНИЕ №1

Составление оптимального маршрута посещения главных достопримечательностей

г. Мурманск с помощью графа.

Оптимальный маршрут составит:

8. Кольский мост6. Парк Огни Мурманска7. Парк Долина Уюта2. Свято-Никольский собор10. Площадь Пяти углов5. Атомный ледокол Ленин9. Музей истории Мурманского морского пароходства11. Морской торговый порт1. Морской православный храм Спас-на-водах4. Памятник коту Семену3. Океанариум.

ПУТЕВОДИТЕЛЬ ПО ДОСТОПРИМЕЧАТЕЛЬНОСТЯМ МУРМАНСКА

ПРИЛОЖЕНИЕ №2

Социологические опросы № 1, 2

Понятие графа целесообразно вводить после того, как разобрано несколько задач, подобных задаче 1, решающее соображение в которых – графическое представление. Важно, чтобы ученики сразу осознали, что один и тот же граф может быть нарисован разными способами. Строгое определение графа, на мой взгляд, давать не нужно, т.к. оно слишком громоздко и это только затруднит обсуждение. На первых порах хватит и интуитивного понятия. При обсуждении понятия изоморфизма можно решить несколько упражнений на определение изоморфных и неизоморфных графов. Одно из центральных мест темы – теорема о четности числа нечетных вершин. Важно, чтобы ученики до конца разобрались в ее доказательстве и научились применять к решению задач. При разборе нескольких задач рекомендую не ссылаться на теорему, а фактически повторять ее доказательство. Чрезвычайно важно также понятие связности графа. Содержательным соображением здесь является рассмотрение компоненты связности, на это необходимо обратить особое внимание. Эйлеровы графы – тема почти игровая.

Первая и главная цель, которую нужно преследовать при изучении графов, –научить школьников видеть граф в условии задачи и грамотно переводить условие на язык теории графов. Не стоят рассказывать обе всем на нескольких занятиях подряд. Лучше разнести занятия по времени на 2–3 учебных года. (Прилагается разработка занятия “Понятие графа. Применение графов к решению задач” в 6 классе).

2. Теоретический материал к теме “Графы”.

Введение

Графы – замечательные математические объекты, с их помощью можно решать очень много различных, внешне не похожих друг на друга задач. В математике существует целый раздел – теория графов, который изучает графы, их свойства и применение. Мы же обсудим только самые основные понятия, свойства графов и некоторые способы решения задач.

Понятие графа

Рассмотрим две задачи.

Задача 1. Между девятью планетами солнечной системы установлено космическое сообщение. Рейсовые ракеты летают по следующим маршрутам: Земля – Меркурий; Плутон – Венера; Земля – Плутон; Плутон – Меркурий; Меркурий – Вене; Уран – Нептун; Нептун – Сатурн; Сатурн – Юпитер; Юпитер – Марс и Марс – Уран. Можно ли долететь на рейсовых ракетах с Земли до Марса?

Решение: Нарисуем схему условия: планеты изобразим точками, а маршруты ракет – линиями.

Теперь сразу видно, что долететь с Земли до Марса нельзя.

Задача 2. Доска имеет форму двойного креста, который получается, если из квадрата 4x4 убрать угловые клетки.

Можно ли обойти ее ходом шахматного коня и вернуться на исходную клетку, побывав на всех клетках ровно по одному разу?

Решение: Занумеруем последовательно клетки доски:

А теперь с помощью рисунка покажем, что такой обход таблицы, как указано в условии, возможен:

Мы рассмотрели две непохожие задачи. Однако решения этих двух задач объединяет общая идея – графическое представление решения. При этом и картинки, нарисованные для каждой задачи, оказались похожими: каждая картинка – это несколько точек, некоторые из которых соединены линиями.

Такие картинки и называются графами . Точки при этом называются вершинами , а линии – ребрами графа. Заметим, что не каждая картинка такого вида будет называться графом. Например. если вас попросят нарисовать в тетради пятиугольник, то такой рисунок графом не будет. Будем называть что рисунок такого вида, как в предыдущих задачах, графом, если есть какая-то конкретная задача для которой такой рисунок построен.

Другое замечание касается вида графа. Попробуйте проверить, что граф для одной и той же задачи можно нарисовать разными способами; и наоборот для разных задач можно нарисовать одинаковые по виду графы. Здесь важно лишь то, какие вершины соединены друг с другом, а какие – нет. Например, граф для задачи 1 можно нарисовать по-другому:

Такие одинаковые, но по-разному нарисованные графы, называются изоморфными .

Степени вершин и подсчет числа ребер графа

Запишем еще одно определение: Степенью вершины графа называется количество выходящих из нее ребер. В связи с этим, вершина, имеющая четную степень, называется четной вершиной, соответственно, вершина, имеющая нечетную степень, называется нечетной вершиной.

С понятием степени вершины связана одна из основных теорем теории графов –теорема о честности числа нечетных вершин. Докажем ее мы немного позднее, а сначала для иллюстрации рассмотрим задачу.

Задача 3. В городе Маленьком 15 телефонов. Можно ли их соединить проводами так, чтобы каждый телефон был соединен ровно с пятью другими?

Решение: Допустим, что такое соединение телефонов возможно. Тогда представим себе граф, в котором вершины обозначают телефоны, а ребра – провода, их соединяющие. Подсчитаем, сколько всего получится проводов. К каждому телефону подключено ровно 5 проводов, т.е. степень каждой вершины нашего графа – 5. Чтобы найти число проводов, надо просуммировать степени всех вершин графа и полученный результат разделить на 2 (т.к. каждый провод имеет два конца, то при суммировании степеней каждый провод будет взят 2 раза). Но тогда количество проводов получится разным . Но это число не целое. Значит наше предположение о том, что можно соединить каждый телефон ровно с пятью другими, оказалось неверным.

Ответ. Соединить телефоны таким образом невозможно.

Теорема : Любой граф содержит четное число нечетных вершин.

Доказательство: Количество ребер графа равно половине суммы степеней его вершин. Так как количество ребер должно быть целым числом, то сумма степеней вершин должна быть четной. А это возможно только в том случае, если граф содержит четное число нечетных вершин.

Связность графа

Есть еще одно важное понятие, относящееся к графам – понятие связности.

Граф называется связным, если из любые две его вершины можно соединить путем, т.е. непрерывной последовательностью ребер. Существует целый ряд задач, решение которых основано на понятии связности графа.

Задача 4. В стране Семерка 15 городов, каждый из городов соединен дорогами не менее, чем с семью другими. Докажите, что из каждого города модно добраться в любой другой.

Доказательство : Рассмотрим два произвольных А и В города и допустим, что между ними нет пути. Каждый из них соединен дорогами не менее, чем с семью другими, причем нет такого города, который был бы соединен с обоими рассматриваемыми городами (в противном случае существовал бы путь из A в B). Нарисуем часть графа, соответствующую этим городам:

Теперь явно видно, что мы получили не менее различных 16 городов, что противоречит условию задачи. Значит утверждение доказано от противного.

Если принять во внимание предыдущее определение, то утверждение задачи можно переформулировать и по-другому: “Доказать, что граф дорог страны Семерка связен.”

Теперь вы знаете, как выглядит связный граф. Несвязный граф имеет вид нескольких “кусков”, каждый из которых – либо отдельная вершина без ребер, либо связный граф. Пример несвязного графа вы видите на рисунке:

Каждый такой отдельный кусок называется компонентой связности графа. Каждая компонента связности представляет собой связный граф и для нее выполняются все утверждения, которые мы доказали для связных графов. Рассмотрим пример задачи, в которой используется компонента связности:

Задача 5 . В Тридевятом царстве только один вид транспорта – ковер-самолет. Из столицы выходит 21 ковролиния, из города Дальний – одна, а из всех остальных городов, – по 20. Докажите, что из столицы можно долететь в город Дальний.

Доказательство: Понятно, что если нарисовать граф ковролиний Царства, то он может быть несвязным. Рассмотрим компоненту связности, которая включает в себя столицу Царства. Из столицы выходит 21 ковролиния, а из любых других городов, кроме города Дальний – по 20, поэтому, чтобы выполнялся закон о четном числе нечетных вершин необходимо, чтобы и город Дальний входил в эту же самую компоненту связности. А так как компонента связности – связный граф, то из столицы существует путь по ковролиниям до города Дальний, что и требовалось доказать.

Графы Эйлера

Вы наверняка сталкивались с задачами, в которых требуется нарисовать какую-либо фигуру не отрывая карандаш от бумаги и проводя каждую линию только один раз. Оказывается, что такая задача не всегда разрешима, т.е. существуют фигуры, которые указанным способом нарисовать нельзя. Вопрос разрешимости таких задач также входит в теорию графов. Впервые его исследовал в 1736 году великий немецкий математик Леонард Эйлер, решая задачу о Кенигсбергских мостах. Поэтому графы, которые можно нарисовать указанным способом, называются Эйлеровыми графами.

Задача 6. Можно ли нарисовать изображенный на рисунке граф не отрывая карандаш от бумаги и проводя каждое ребро ровно один раз?

Решение. Если мы будем рисовать граф так, как сказано в условии, то в каждую вершину, кроме начальной и конечной, мы войдем столько же раз, сколько выйдем из нее. То есть все вершины графа, кроме двух должны быть четными. В нашем же графе имеется три нечетные вершины, поэтому его нельзя нарисовать указанным в условии способом.

Сейчас мы доказали теорему об Эйлеровых графах:

Теорема : Эйлеров граф должен иметь не более двух нечетных вершин.

И в заключение – задача о Кенигсбергских мостах.

Задача 7. На рисунке изображена схема мостов города Кенигсберга.

Можно ли совершить прогулку так, чтобы пройти по каждому мосту ровно 1 раз?

3. Задачи к теме “Графы”

Понятие графа.

1. На квадратной доске 3x3 расставлены 4 коня так, как показано на рис.1. Можно ли сделав несколько ходов конями, переставить их в положение, показанное на рис.2?

Рис. 1

Рис. 2

Решение. Занумеруем клетки доски, как показано на рисунке:

Каждой клетке поставим в соответствие точку на плоскости и, если из одной клетки можно попасть в другую ходом шахматного коня, то соответствующие точки соединим линией. Исходная и требуемая расстановки коней показаны на рисунках:

При любой последовательности ходов конями порядок их следования, очевидно, измениться не может. Поэтому переставить коней требуемым образом невозможно.

2. В стране Цифра есть 9 городов с названиями 1, 2, 3, 4, 5, 6, 7, 8, 9. Путешественник обнаружил, что два города соединены авиалинией в том и только в том случае, если двузначное число, образованное названиями городов, делится на 3. Можно ли долететь по воздуху из города 1 в город 9 ?

Решение. Поставив в соответствие каждому городу точку и соединив точки линией, если сумма цифр делится на 3, получим граф, в котором цифры 3, 5, 9 связаны между собой, но не связаны с остальными. Значит долететь из города 1 в город 9 нельзя.

Степени вершин и подсчет числа ребер.

3. В государстве 100 городов к из каждого города выходит 4 дороги. Сколько всего дорог в государстве.

Решение. Подсчитаем общее количество выходящих городов дорог – 100 . 4 = 400. Однако при таком подсчете каждая дорога посчитана 2 раза – она выходит из одного города и входит в другой. Значит всего дорог в два раза меньше, т.е. 200.

4. В классе 30 человек. Может ли быть так, что 9 человек имеют по 3 друга, 11 – по 4 друга, а 10 – по 5 друзей?

Ответ. Нет (теорема о четности числа нечетных вершин).

5. У короля 19 вассалов. Может ли оказаться так, что у каждого вассала 1, 5 или 9 соседей?

Ответ. Нет, не может.

6. Может ли в государстве, в котором из каждого города выходит ровно 3 дороги, быть ровно 100 дорог?

Решение . Подсчитаем число городов. Число дорог равно числу городов х, умноженному на 3 (число выходящих из каждого города дорог) и разделенному на 2 (см. задачу 3). Тогда 100 = Зх/2 => Зх=200, чего не может быть при натуральном х. Значит 100 дорог в таком государстве быть не может.

7. Докажите, что число людей, живших когда-либо на Земле и сделавших нечетное число рукопожатий, четно.

Доказательство непосредственно следует из теоремы о четности числа нечетных вершин графа.

Связность.

8. В стране из каждого города выходит 100 дорог и из каждого города можно добраться до любого другого. Одну дорогу закрыли на ремонт. Докажите, что и теперь из любого города можно добраться до любого другого.

Доказательство . Рассмотрим компоненту связности, в которую входит один из городов, дорогу между которыми закрыли. По теореме о четности числа нечетных вершин в нее входит и второй город. А значит по-прежнему можно найти маршрут и добраться из одного из этих городов в другой.

Графы Эйлера.

9. Имеется группа островов, соединенных мостами так, что от каждого острова можно добраться до любого другого. Турист обошел все острова, пройдя по каждому мосту розно 1 раз. На острове Троекратном он побывал трижды. Сколько мостов ведет с Троекратного, если турист

а) не с него начал и не на нем закончил?
б) с него начал, но не на нем закончил?
в) с него начал и на нем закончил?

10. На рисунке изображен парк, разделенный на несколько частей заборами. Можно ли прогуляться по парку и его окрестностям так, чтобы перелезть через каждый забор розно 1 раз?

Вполне несвязные графы . Граф, у которого множество ребер пусто, называется вполне несвязным (или пустым) графом. Будем обозначать вполне несвязный граф с п вершинами через N n ; N 4 показан на рис. 1. Заметим, что у вполне несвязного графа все вершины изолированы. Вполне несвязные графы не представляют особого интереса.

Полные графы . Простой граф, в котором любые две вершины смежны, называется полным графом. Полный граф с n вершинами обычно обозначается через. Графы и изображены на рис. 2 и 3. имеет ровно n (n - 1)/2 ребер.


Регулярные графы . Граф, у которого все вершины имеют одну и ту же степень, называется регулярным графом. Если степень каждой вершины равна r, то граф называется регулярным степени r. Регулярные графы степени 3, называемые также кубическими (или трехвалентными) графами (см., например, рис. 2 и 4). Другим известным примером кубического графа является так называемый граф Петерсена, показанный на рис. 5. Отметим, что каждый вполне несвязный граф является регулярным степени 0, а каждый полный граф К n - регулярным степени n - 1.

Платоновы графы . Среди регулярных графов особенно интересны так называемые Платоновы графы - графы образованные вершинами и ребрами пяти правильных многогранников - платоновых тел: тетраэдра, куба, октаэдра, додекаэдра и икосаэдра. Граф соответствует тетраэдру (рис. 2); графы, соответствующие кубу и октаэдру, показаны на рис. 5 и 6;

Двудольные графы . Допустим, что множество вершин графа можно разбить на два непересекающихся подмножества V 1 и V 2 так, что каждое ребро в G соединяет какую-нибудь вершину из V 1 с какой-либо вершиной из V 2 (рис. 7);

тогда G называется двудольным графом. Такие графы иногда обозначают G(V 1, V 2), если хотят выделить два указанных подмножества. Двудольный граф можно определить и по-другому - в терминах раскраски его вершин двумя цветами, скажем красным и синим. При этом граф называется двудольным, если каждую его вершину можно окрасить красным или синим цветом так, чтобы любое ребро имело один конец красный, а другой - синий. Следует подчеркнуть, что в двудольном графе совсем не обязательно каждая вершина из V 1 соединена с каждой вершиной из V 2 ; если же это так и если при этом граф G простой, то он называется полным двудольным графом и обычно обозначается где m, n - число вершин соответственно в V 1 и V 2 . Например, на рис. 8 изображен граф K 4 , 3 . Заметим, что граф имеет ровно m + n вершин и mn ребер. Полный двудольный граф вида называется звездным графом; на рис. 9 изображен звездный граф.

Связные графы . Граф связный, если его нельзя представить в виде объединения двух графов, и несвязный в противном случае. Очевидно, что всякий несвязный граф G можно представить в виде объединения конечного числа связных графов - каждый из таких связных графов называется компонентой (связности) графа G. (На рис. 10 изображен граф с тремя компонентами.) Доказательство некоторых утверждений для произвольных графов часто бывает удобно сначала провести для связных графов, а затем применить их к каждой компоненте в отдельности.