Теплотехнический расчет строительных конструкций графики. Методика теплотехнического расчета наружной стены. Теплотехнический расчет наружной стены, программа упрощает вычисления

Требуется определить толщину утеплителя в трехслойной кирпичной наружной стене в жилом здании, расположенном в г. Омске. Конструкция стены: внутренний слой – кирпичная кладка из обыкновенного глиняного кирпича толщиной 250 мм и плотностью 1800 кг/м 3 , наружный слой – кирпичная кладка из облицовочного кирпича толщиной 120 мм и плотностью 1800 кг/м 3 ; между наружным и внутренними слоями расположен эффективный утеплитель из пенополистирола плотностью 40 кг/м 3 ; наружный и внутренний слои соединяются между собой стеклопластиковыми гибкими связями диаметром 8 мм, расположенными с шагом 0,6 м.

1. Исходные данные

Назначение здания – жилой дом

Район строительства – г. Омск

Расчетная температура внутреннего воздуха t int = плюс 20 0 С

Расчетная температура наружного воздуха t ext = минус 37 0 С

Расчетная влажность внутреннего воздуха – 55%

2. Определение нормируемого сопротивления теплопередаче

Определяется по таблице 4 в зависимости от градусо-суток отопительного периода. Градусо-сутки отопительного периода, D d , °С×сут, определяют по формуле 1, исходя из средней температуры наружного воздуха и продолжительности отопительного периода.

По СНиП 23-01-99* определяем, что в г. Омске средняя температура наружного воздуха отопительного периода равна: t ht = -8,4 0 С , продолжительность отопительного периода z ht = 221 сут. Величина градусо-суток отопительного периода равна:

D d = (t int - t ht ) z ht = (20 + 8,4)×221 = 6276 0 С сут.

Согласно табл. 4. нормируемое сопротивление теплопередаче R reg наружных стен для жилых зданий соответствующее значению D d = 6276 0 С сут равно R reg = a D d + b = 0,00035×6276 + 1,4 = 3,60 м 2 0 С/Вт.

3. Выбор конструктивного решения наружной стены

Конструктивное решение наружной стены предложено в задании и представляет собой трехслойное ограждение с внутренним слоем из кирпичной кладки толщиной 250 мм, наружным слоем из кирпичной кладки толщиной 120 мм, между наружным и внутренним слоем расположен утеплитель из пенополистирола. Наружный и внутренний слой соединяются между собой гибкими связями из стеклопластика диаметром 8 мм, расположенными с шагом 0,6 м.



4. Определение толщины утеплителя

Толщина утеплителя определяется по формуле 7:

d ут = (R reg ./r – 1/a int – d кк /l кк – 1/a ext)× l ут

где R reg . – нормируемое сопротивление теплопередаче, м 2 0 С/Вт; r – коэффициент теплотехнической однородности; a int – коэффициент теплоотдачи внутренней поверхности, Вт/(м 2 ×°С); a ext – коэффициент теплоотдачи наружной поверхности, Вт/(м 2 ×°С); d кк – толщина кирпичной кладки, м ; l кк – расчетный коэффициент теплопроводности кирпичной кладки, Вт/(м×°С) ; l ут – расчетный коэффициент теплопроводности утеплителя, Вт/(м×°С) .

Нормируемое сопротивление теплопередаче определено: R reg = 3,60 м 2 0 С/Вт.

Коэффициент теплотехнической однородности для кирпичной трехслойной стены со стеклопластиковыми гибкими связями составляет около r=0,995 , и в расчетах может не учитываться (для информации – если применили стальные гибкие связи, то коэффициент теплотехнической однородности может достигать 0,6-0,7) .

Коэффициент теплоотдачи внутренней поверхности определяется по табл. 7 a int = 8,7 Вт/(м 2 ×°С).

Коэффициент теплоотдачи наружной поверхности принимается по таблице 8 a е xt = 23 Вт/(м 2 ×°С).

Суммарная толщина кирпичной кладки составляет 370 мм или 0,37 м.

Расчетные коэффициенты теплопроводности используемых материалов определяются в зависимости от условий эксплуатации (А или Б). Условия эксплуатации определяются в следующей последовательности:

По табл. 1 определяем влажностный режим помещений: так как расчетная температура внутреннего воздуха +20 0 С, расчетная влажность 55%, влажностный режим помещений – нормальный;

По приложению В (карта РФ) определяем, что г. Омск расположен в сухой зоне;

По табл. 2 , в зависимости от зоны влажности и влажностного режима помещений, определяем, что условия эксплуатации ограждающих конструкций – А .

По прил. Д определяем коэффициенты теплопроводности для условий эксплуатации А: для пенополистирола ГОСТ 15588-86 плотностью 40 кг/м 3 l ут = 0,041 Вт/(м×°С) ; для кирпичной кладки из глиняного обыкновенного кирпича на цементно-песчаном растворе плотностью 1800 кг/м 3 l кк = 0,7 Вт/(м×°С) .

Подставим все определенные значения в формулу 7 и рассчитываем минимальную толщину утеплителя из пенополистирола:

d ут = (3,60 – 1/8,7 – 0,37/0,7 – 1/23)× 0,041 = 0,1194 м

Округляем полученное значение в большую сторону с точностью до 0,01 м: d ут = 0,12 м. Выполняем проверочный расчет по формуле 5:

R 0 = (1/a i + d кк /l кк + d ут /l ут + 1/a e)

R 0 = (1/8,7 + 0,37/0,7 + 0,12/0,041 + 1/23) = 3,61 м 2 0 С/Вт

5. Ограничение температуры и конденсации влаги на внутренней поверхности ограждающей конструкции

Δt o , °С, между температурой внутреннего воздуха и температурой внутренней поверхности ограждающей конструкции не должен превышать нормируемых величин Δt n , °С, установленных в таблице 5 , и определен следующим образом

Δt o = n(t int t ext )/( R 0 a int) = 1(20+37)/(3,61 х 8,7) = 1,8 0 С т.е. меньше, чем Δt n , = 4,0 0 С, определенное по таблице 5 .

Вывод: т олщина утеплителя из пенополистирола в трехслойной кирпичной стене составляет 120 мм. При этом сопротивление теплопередаче наружной стены R 0 = 3,61 м 2 0 С/Вт , что больше нормируемого сопротивления теплопередаче R reg . = 3,60 м 2 0 С/Вт на 0,01м 2 0 С/Вт. Расчетный температурный перепад Δt o , °С, между температурой внутреннего воздуха и температурой внутренней поверхности ограждающей конструкции не превышает нормативное значение Δt n , .

Пример теплотехнический расчета светопрозрачных ограждающих конструкций

Светопрозрачные ограждающие конструкции (окна) подбирают по следующей методике.

Нормируемое сопротивление теплопередаче R reg определяется по таблице 4 СНиП 23-02-2003 (колонка 6) в зависимости от градусо-суток отопительного периода D d . При этом тип здания и D d принимают как в предыдущем примере теплотехнического расчета светонепрозрачных ограждающих конструкций. В нашем случае D d = 6276 0 С сут, тогда для окна жилого дома R reg = a D d + b = 0,00005×6276 + 0,3 = 0,61 м 2 0 С/Вт.

Выбор светопрозрачных конструкций осуществляется по значению приведенного сопротивления теплопередаче R o r , полученному в результате сертификационных испытаний или по приложению Л Свода правил . Если приведенное сопротивление теплопередаче выбранной светопрозрачной конструкции R o r , больше или равно R reg , то эта конструкция удовлетворяет требованиям норм.

Вывод: для жилого дома в г. Омске принимаем окна в ПВХ-переплетах с двухкамерными стеклопакетами из стекла с твердым селективным покрытием и заполнением аргоном межстекольного пространства у которых R о r = 0,65 м 2 0 С/Вт больше R reg = 0,61 м 2 0 С/Вт.

ЛИТЕРАТУРА

  1. СНиП 23-02-2003. Тепловая защита зданий.
  2. СП 23-101-2004. Проектирование тепловой защиты.
  3. СНиП 23-01-99*. Строительная климатология.
  4. СНиП 31-01-2003. Здания жилые многоквартирные.
  5. СНиП 2.08.02-89 * . Общественные здания и сооружения.

В современных условиях человек все чаще задумывается о рациональном использовании ресурсов. Электричество, вода, материалы. К экономии всего этого в мире пришли уже достаточно давно и всем понятно как это сделать. Но основную сумму в счетах на оплату составляет отопление, и не каждому понятно, как снизить расход по этому пункту.

Что такое теплотехнический расчет?

Теплотехнический расчет выполняют для того, чтобы подобрать толщину и материал ограждающих конструкций и привести здание в соответствие нормам тепловой защиты. Основным нормативным документом, регламентирующим способность конструкции сопротивляться теплопередаче, является СНиП 23-02-2003 «Тепловая защита зданий».

Основным показателем ограждающей поверхности с точки зрения теплозащиты стало приведенное сопротивление теплопередаче. Это величина, учитывающая теплозащитные характеристики всех слоев конструкции, учитывая мостики холода.

Подробный и грамотный теплотехнический расчет — достаточно трудоемок. При возведении частных домов, собственники стараются учесть прочностные характеристики материалов, часто забывая о сохранении тепла. Это может привести к довольно плачевным последствиям.

Зачем выполняется расчет?

Перед началом строительства заказчик может выбрать, будет он учитывать теплотехнические характеристики или обеспечит только прочность и устойчивость конструкций.

Расходы на утепление совершенно точно увеличат смету на возведение здания, но снизят затраты на дальнейшую эксплуатацию. Индивидуальные дома строят на десятки лет, возможно, они будут служить и следующим поколениям. За это время затраты на эффективный утеплитель окупятся несколько раз.

Что получает владелец при правильном выполнении расчетов:

  • Экономия на отоплении помещений. Тепловые потери здания снижаются, соответственно, уменьшится количество секций радиатора при классической системе отопления и мощность системы теплых полов. В зависимости от способа нагрева, затраты владельца на электричество, газ или горячую воду становятся меньше;
  • Экономия на ремонте. При правильном утеплении в помещении создается комфортный микроклимат, на стенах не образуется конденсат, и не появляются опасные для человека микроорганизмы. Наличие на поверхности грибка или плесени требует проведения ремонта, причем простой косметический не принесет никаких результатов и проблема возникнет вновь;
  • Безопасность для жильцов. Здесь, также как и в предыдущем пункте, речь идет о сырости, плесени и грибке, которые могут вызывать различные болезни у постоянно пребывающих в помещении людей;
  • Бережное отношение к окружающей среде. На планете дефицит ресурсов, поэтому уменьшение потребления электроэнергии или голубого топлива благоприятно влияет на экологическую обстановку.

Нормативные документы для выполнения расчета

Приведенное сопротивление и его соответствие нормируемому значению – главная цель расчета. Но для его выполнения потребуется узнать теплопроводности материалов стены, кровли или перекрытия. Теплопроводность – величина, характеризующая способность изделия проводить через себя тепло. Чем она ниже, тем лучше.

Во время проведения расчета теплотехники опираются на следующие документы:

  • СП 50.13330.2012 «Тепловая защита зданий». Документ переиздан на основе СНиП 23-02-2003. Основной норматив для расчета ;
  • СП 131.13330.2012 «Строительная климатология». Новое издание СНиП 23-01-99*. Данный документ позволяет определить климатические условия населенного пункта, в котором расположен объект ;
  • СП 23-101-2004 «Проектирование тепловой защиты зданий» более подробно, чем первый документ в списке, раскрывает тему ;
  • ГОСТ 30494-96 (заменен на ГОСТ 30494-2011 с 2011 года) «Здания жилые и общественные» ;
  • Пособие для студентов строительных ВУЗов Е.Г. Малявина «Теплопотери здания. Справочное пособие» .

Теплотехнический расчет не сложен. Его может выполнить человек без специального образования по шаблону. Главное очень внимательно подойти к вопросу.

Пример расчета трехслойной стены без воздушной прослойки

Давайте подробно рассмотрим пример теплотехнического расчета. Для начала необходимо определиться с исходными данными. Материалы для строительства стен Вы, как правило, выбираете сами. Мы же будем рассчитывать толщину утепляющего слоя исходя из материалов стены.

Исходные данные

Данные индивидуальные для каждого объекта строительства и зависят от места расположения объекта.

1. Климат и микроклимат

  1. Район строительства: г. Вологда.
  2. Назначение объекта: жилое.
  3. Относительная влажность воздуха для помещения с нормальным влажностным режимом составляет 55% ( п.4.3. табл.1).
  4. Температура внутри жилых помещений tint задается нормативными документами ( табл.1) и равна 20 градусов Цельсия».

text — расчетная температура воздуха снаружи. Она устанавливается по температуре самых холодных пяти дней в году. Значение можно найти в , таблице 1, столбец 5. Для заданной местности значение составляет -32ᵒС.

zht = 231 сутки – количество дней периода, когда необходимо дополнительное отопление помещения, то есть среднесуточная температура снаружи составляет меньше 8ᵒС. Значение ищут в той же таблице, что и предыдущее, но в столбце 11.

tht = -4,1ᵒС – средняя температура воздуха снаружи во время периода отопления. Значение указано в столбце 12.

2. Материалы стены

В расчет следует принимать все слои (даже слой штукатурки, если он есть). Это позволит наиболее точно рассчитать конструкцию.

В данном варианте рассмотрим стену, состоящую из следующих материалов:

  1. слой штукатурки, 2 сантиметра;
  2. внутренняя верста из кирпича керамического рядового полнотелого толщиной 38 сантиметров;
  3. слой минераловатного утеплителя Roсkwool, толщина которого подбирается расчетом;
  4. наружная верста из лицевого керамического кирпича, толщиной 12 сантиметров.

3. Теплопроводность принятых материалов

Все свойства материалов должны быть представлены в паспорте от производителя. Многие компании представляют полную информацию о продукции на своих сайтах. Характеристики выбранных материалов для удобства сводятся в таблицу.

Расчет толщины утеплителя для стены

1. Условие энергосбережения

Расчет значения градусо-суток отопительного периода (ГСОП) производится по формуле:

Dd = (tint — tht) zht.

Все буквенные обозначения, представленные в формуле, расшифрованы в исходных данных.

Dd = (20-(-4,1)) *231=5567,1 ᵒС*сут.

Нормативное сопротивление теплопередаче находим по формуле:

Коэффициенты а и b принимаются по таблице 4, столбец 3 .

Для исходных данных а=0,00045, b=1,9.

Rreq = 0,00045*5567,1+1,9=3,348 м2*ᵒС/Вт.

2. Расчет нормы тепловой защиты исходя из условий санитарии

Данный показатель не рассчитывается для жилых зданий и приводится в качестве примера. Расчет проводят при избытке явного тепла, превышающем 23 Вт/м3, или эксплуатации здания весной и осенью. Также вычисления необходимы при расчетной температуре менее 12ᵒС внутри помещения. Используют формулу 3 :

Коэффициент n принимается по таблице 6 СП «Тепловая защита зданий», αint по таблице 7, Δtn по пятой таблице.

Rreq = 1*(20+31)4*8,7 = 1,47 м2*ᵒС/Вт.

Из двух полученных в первом и втором пункте значений выбирается наибольшее, и дальнейший расчет ведется по нему. В данном случае Rreq = 3,348 м2*ᵒС/Вт.

3. Определение толщины утеплителя

Сопротивление теплопередаче для каждого слоя получают по формуле:

где δ – толщина слоя, λ – его теплопроводность.

а) штукатурка R шт = 0,02/0,87 = 0,023 м2*ᵒС/Вт;
б) кирпич рядовой R ряд.кирп. = 0,38/0,48 = 0,79 м2*ᵒС/Вт;
в) кирпич лицевой Rут = 0,12/0,48 = 0,25 м2*ᵒС/Вт.

Минимальное сопротивление теплопередаче всей конструкции определяется по формуле (, формула 5.6):

Rint = 1/αint = 1/8,7 = 0,115 м2*ᵒС/Вт;
Rext = 1/αext = 1/23 = 0,043 м2*ᵒС/Вт;
∑Ri = 0,023+0,79+0,25 = 1,063 м2*ᵒС/Вт, то есть сумма чисел, полученных в пункте 3;

R_тр^ут= 3,348 – (0,115+0,043+1,063) = 2,127 м2*ᵒС/Вт.

Толщина утеплителя определяется по формуле ( формула 5.7):

δ_тр^ут= 0,038*2,127 = 0,081 м.

Найденная величина является минимальной. Слой утеплителя принимают не меньше этого значения. В данном расчете принимаем окончательно толщину минераловатного утеплителя 10 сантиметров, для того, чтобы не пришлось резать купленный материал.

Для расчетов тепловых потерь здания, которые выполняются для проектирования отопительных систем, необходимо найти фактическое значение сопротивления теплопередаче с найденной толщиной утеплителя.

Rо = Rint+Rext+∑Ri = 1/8,7 + 1/23 + 0,023 + 0,79 + 0,1/0,038 + 0,25 = 3,85 м2*ᵒС/Вт > 3,348 м2*ᵒС/Вт.

Условие выполнено.

Влияние воздушного зазора на теплозащитные характеристики

При устройстве стены, защищенной плитным утеплителем возможно устройство вентилируемой прослойки. Она позволяет отводить конденсат от материала и предотвращать его намокание. Минимальная толщина зазора 1 сантиметр. Это пространство не замкнуто и имеет непосредственное сообщение с наружным воздухом.

При наличии воздушно-вентилируемой прослойки в расчете учитываются только те слои, которые находятся до нее со стороны теплого воздуха. Например, пирог стены состоит из штукатурки, внутренней кладки, утеплителя, воздушной прослойки и наружной кладки. В расчет принимаются только штукатурка, внутренняя кладка и утеплитель. Наружный слой кладки идет после вентзазора, поэтому не учитывается. В данном случае наружная кладка выполняет лишь эстетическую функцию и защищает утеплитель от внешних воздействий.

Важно: при рассмотрении конструкций, где воздушное пространство замкнуто, оно учитывается в расчете. Например, в случае оконных заполнений. Воздух между стеклами играет роль эффективного утеплителя.

Программа «Теремок»

Для выполнения расчета с помощью персонального компьютера специалисты часто используют программу для теплотехнического расчета «Теремок». Она существует в онлайн-варианте и как приложение для оперативных систем.

Программа производит вычисления на основе всех необходимых нормативных документов. Работа с приложением предельно проста. Оно позволяет выполнять работу в двух режимах:

  • расчет необходимого слоя утеплителя;
  • проверка уже продуманной конструкции.

В базе данных имеются все необходимые характеристики для населенных пунктов нашей страны, достаточно лишь выбрать нужный. Также необходимо выбрать тип конструкции: наружная стена, мансардная кровля, перекрытие над холодным подвалом или чердачное.

При нажатии кнопки продолжения работы появляется новое окно, позволяющее «собрать» конструкцию. Многие материалы имеются в памяти программы. Они подразделены на три группы для удобства поиска: конструкционные, теплоизоляционные и теплоизоляционно-конструкционные. Нужно задать лишь толщину слоя, теплопроводность программа укажет сама.

При отсутствии необходимых материалов их можно добавить самостоятельно, зная теплопроводность.

Перед тем как производить вычисления, необходимо выбрать тип расчета над табличкой с конструкцией стены. В зависимости от этого программа выдаст либо толщину утеплителя, либо сообщит о соответствии ограждающей конструкции нормам. После завершения вычислений, можно сформировать отчет в текстовом формате.

«Теремок» очень удобен для пользования и с ним способен разобраться даже человек без технического образования. Специалистам же он значительно сокращает время на вычисления и оформление отчета в электронном виде.

Главным достоинством программы является тот факт, что она способна вычислить толщину утепления не только наружной стены, но и любой конструкции. Каждый из расчетов имеет свои особенности, и непрофессионалу довольно сложно разобраться во всех. Для строительства частного дома достаточно освоить данное приложение, и не придется вникать во все сложности. Расчет и проверка всех ограждающих поверхностей займет не более 10 минут.

Теплотехнический расчет онлайн (обзор калькулятора)

Теплотехнический расчет можно сделать в Интернете онлайн. Неплохим, как на мое усмотрение являться сервис: rascheta.net . Давайте вкратце рассмотрим, как с ним работать.

Перейдя на сайт онлайн калькулятора, первым делом нужно выбрать нормативы по которым будет производится расчет. Я выбираю свод правил от 2012 года, так как это более новый документ.

Дальше нужно указать регион в котором будет строятся объект. Если нет Вашего города выбирайте ближайший большой город. После этого указываем тип зданий и помещений. Скорей всего Вы будете рассчитывать жилое здание, но можно выбрать общественные, административные, производственные и другие. И последнее, что нужно выбрать — вид ограждающей конструкции (стены, перекрытия, покрытия).

Расчетную среднюю температуру, относительную влажность и коэффициент теплотехнической однородности оставляем такими же, если не знаете как их изменять.

В опциях расчета устанавливаем все две галочки, кроме первой.

В таблице указываем пирог стены начиная снаружи — выбираем материал и его толщину. На этом собственно весь расчет и закончен. Под таблицей будет результат расчета. Если какое-то из условий не выполняется меняем толщину материала или же сам материал, пока данные не будут соответствовать нормативным документам.

Если Вы желаете посмотреть алгоритм расчета, то нажимаем на кнопку «Отчет» внизу страницы сайта.

Создание комфортных условий для проживания или трудовой деятельности является первостепенной задачей строительства. Значительная часть территории нашей страны находится в северных широтах с холодным климатом. Поэтому поддержание комфортной температуры в зданиях всегда актуально. С ростом тарифов на энергоносители снижение расхода энергии на отопление выходит на первый план.

Климатические характеристики

Выбор конструкции стен и кровли зависит прежде всего от климатических условий района строительства. Для их определения необходимо обратиться к СП131.13330.2012 «Строительная климатология». В расчетах используются следующие величины:

  • температура наиболее холодной пятидневки обеспеченностью 0,92, обозначается Тн;
  • средняя температура, обозначается Тот;
  • продолжительность, обозначается ZOT.

На примере для Мурманска величины имеют следующие значения:

  • Тн=-30 град;
  • Тот=-3.4 град;
  • ZOT=275 суток.

Кроме того, необходимо задать расчетную температуру внутри помещения Тв, она определяется в соответствии с ГОСТом 30494-2011. Для жилья можно принять Тв=20 град.

Чтобы выполнить теплотехнический расчет ограждающих конструкций, предварительно вычисляют величину ГСОП (градусо-сутки отопительного периода):
ГСОП = (Тв - Тот) х ZOT.
На нашем примере ГСОП=(20 - (-3,4)) х 275 = 6435.

Основные показатели

Для правильного выбора материалов ограждающих конструкций необходимо определить, какими теплотехническими характеристиками они должны обладать. Способность вещества проводить тепло характеризуется его теплопроводностью, обозначается греческой буквой l (лямбда) и измеряется в Вт/(м х град.). Способность конструкции удерживать тепло характеризуется её сопротивлением теплопередаче R и равняется отношению толщины к теплопроводности: R = d/l.

В случае если конструкция состоит из нескольких слоёв, сопротивление рассчитывается для каждого слоя и затем суммируется.

Сопротивление теплопередачи является основным показателем наружной конструкции. Его величина должна превышать нормативное значение. Выполняя теплотехнический расчет ограждающих конструкций здания, мы должны определить экономически оправданный состав стен и кровли.

Значения теплопроводности

Качество теплоизоляции определяется в первую очередь теплопроводностью. Каждый сертифицированный материал проходит лабораторные исследования, в результате которых определяется это значение для условий эксплуатации «А» или «Б». Для нашей страны большинству регионов соответствуют условия эксплуатации «Б». Выполняя теплотехнический расчет ограждающих конструкций дома, следует использовать именно это значение. Значения теплопроводности указывают на этикетке либо в паспорте материала, но если их нет, можно воспользоваться справочными значениями из Свода правил. Значения для наиболее популярных материалов приведены ниже:

  • Кладка из обыкновенного кирпича - 0,81 Вт(м х град.).
  • Кладка из силикатного кирпича - 0,87 Вт(м х град.).
  • Газо- и пенобетон (плотностью 800) - 0,37 Вт(м х град.).
  • Древесина хвойных пород - 0,18 Вт(м х град.).
  • Экструдированный пенополистирол - 0,032 Вт(м х град.).
  • Плиты минераловатные (плотность 180) - 0,048 Вт(м х град.).

Нормативное значение сопротивления теплопередаче

Расчётное значение сопротивления теплопередаче не должно быть меньше базового значения. Базовое значение определяется по таблице 3 СП50.13330.2012 « зданий». В таблице определены коэффициенты для расчета базовых значений сопротивления теплопередаче всех ограждающих конструкций и типов зданий. Продолжая начатый теплотехнический расчет ограждающих конструкций, пример расчета можно представить следующим образом:

  • Рстен = 0,00035х6435 + 1,4 = 3,65 (м х град/Вт).
  • Рпокр = 0,0005х6435 + 2,2 = 5,41 (м х град/Вт).
  • Рчерд = 0,00045х6435 + 1,9 = 4,79 (м х град/Вт).
  • Рокна = 0,00005х6435 + 0,3 = х град/Вт).

Теплотехнический расчет наружной ограждающей конструкции выполняется для всех конструкций, замыкающих «теплый» контур - пол по грунту или перекрытие техподполья, наружные стены (включая окна и двери), совмещенное покрытие или перекрытие неотапливаемого чердака. Также расчет необходимо выполнять и для внутренних конструкций, если перепад температур в смежных комнатах составляет более 8 градусов.

Теплотехнический расчет стен

Большинство стен и перекрытий по своей конструкции многослойны и неоднородны. Теплотехнический расчет ограждающих конструкций многослойной структуры выглядит следующим образом:
R= d1/l1 +d2/l2 +dn/ln,
где n - параметры n-го слоя.

Если рассматривать кирпичную оштукатуренную стену, то получим следующую конструкцию:

  • наружный слой штукатурки толщиной 3 см, теплопроводность 0,93 Вт(м х град.);
  • кладка из полнотелого глиняного кирпича 64 см, теплопроводность 0,81 Вт(м х град.);
  • внутренний слой штукатурки толщиной 3 см, теплопроводность 0,93 Вт(м х град.).

Формула теплотехнического расчета ограждающих конструкций выглядит следующим образом:

R=0,03/0,93 + 0,64/0,81 + 0,03/0,93 = 0,85(м х град/Вт).

Полученное значение существенно меньше определенного ранее базового значения сопротивления теплопередаче стен жилого дома в Мурманске 3,65 (м х град/Вт). Стена не удовлетворяет нормативным требованиям и нуждается в утеплении. Для утепления стены используем толщиной 150 мм и теплопроводностью 0,048 Вт(м х град.).

Подобрав систему утепления, необходимо выполнить проверочный теплотехнический расчет ограждающих конструкций. Пример расчета приведён ниже:

R=0,15/0,048 + 0,03/0,93 + 0,64/0,81 + 0,03/0,93 = 3,97(м х град/Вт).

Полученная расчётная величина больше базовой - 3,65 (м х град/Вт), утеплённая стена удовлетворяет требованиям норм.

Расчёт перекрытий и совмещённых покрытий выполняется аналогично.

Теплотехнический расчёт полов, соприкасающихся с грунтом

Нередко в частных домах или общественных зданиях полы первых этажей выполняются по грунту. Сопротивление теплопередаче таких полов не нормируется, но как минимум конструкция полов не должна допускать выпадения росы. Расчет конструкций, соприкасающихся с грунтом, выполняется следующим образом: полы разбиваются на полосы (зоны) шириной по 2 метра, начиная с внешней границы. Таких зон выделяется до трех, оставшаяся площадь относится к четвертой зоне. Если в конструкции пола не предусмотрен эффективный утеплитель, то сопротивление теплопередаче зон принимается следующим:

  • 1 зона - 2,1 (м х град/Вт);
  • 2 зона - 4,3 (м х град/Вт);
  • 3 зона - 8,6 (м х град/Вт);
  • 4 зона - 14,3 (м х град/Вт).

Нетрудно заметить, что чем дальше участок пола находится от внешней стены, тем выше его сопротивление теплопередаче. Поэтому зачастую ограничиваются утеплением периметра пола. При этом к сопротивлению теплопередаче зоны добавляется сопротивление теплопередаче утепленной конструкции.
Расчет сопротивления теплопередаче пола необходимо включать в общий теплотехнический расчет ограждающих конструкций. Пример расчета полов по грунту рассмотрим ниже. Примем площадь пола 10 х 10, равную 100 м кв.

  • Площадь 1 зоны составит 64 м кв.
  • Площадь 2 зоны составит 32 м кв.
  • Площадь 3 зоны составит 4 м кв.

Среднее значение сопротивления теплопередаче пола по грунту:
Рпола = 100 / (64/2,1 + 32/4,3 + 4/8,6) = 2,6 (м х град/Вт).

Выполнив утепление периметра пола пенополистирольной плитой толщиной 5 см, полосой шириной 1 метр, получим среднее значение сопротивления теплопередаче:

Рпола = 100 / (32/2,1 + 32/(2,1+0,05/0,032) + 32/4,3 + 4/8,6) = 4,09 (м х град/Вт).

Важно отметить, что подобным образом рассчитываются не только полы, но и конструкции стен, соприкасающихся с грунтом (стены заглубленного этажа, теплого подвала).

Теплотехнический расчет дверей

Несколько иначе рассчитывается базовое значение сопротивления теплопередаче входных дверей. Для его расчета понадобится сначала вычислить сопротивление теплопередаче стены по санитарно-гигиеническому критерию(невыпадению росы):
Рст = (Тв - Тн)/(ДТн х ав).

Здесь ДТн - разница температур между внутренней поверхностью стены и температурой воздуха в комнате, определяется по Своду правил и для жилья составляет 4,0.
ав - коэффициент теплоотдачи внутренней поверхности стены, по СП составляет 8,7.
Базовое значение дверей берется равным 0,6хРст.

Для выбранной конструкции двери требуется выполнить проверочный теплотехнический расчет ограждающих конструкций. Пример расчета входной двери:

Рдв = 0,6 х (20-(-30))/(4 х 8,7) = 0,86 (м х град/Вт).

Этому расчетному значению будет соответствовать дверь, утепленная минераловатной плитой толщиной 5 см. Её сопротивление теплопередаче составит R=0,05 / 0,048=1,04 (м х град/Вт), что больше расчетного.

Комплексные требования

Расчеты стен, перекрытий или покрытия выполняются для проверки поэлементных требований нормативов. Сводом правил также установлено комплектное требование, характеризующее качество утепления всех ограждающих конструкций в целом. Эта величина называется «удельная теплозащитная характеристика». Без ее проверки не обходится ни один теплотехнический расчет ограждающих конструкций. Пример расчета по СП приведен ниже.

Коб = 88,77 / 250 = 0,35, что меньше нормируемого значения 0,52. В данном случае площади и объем приняты для дома размерами 10 х 10 х 2,5 м. Сопротивления теплопередачи - равные базовым величинам.

Нормируемое значение определяется в соответствии с СП в зависимости от отапливаемого объёма дома.

Помимо комплексного требования, для составления энергетического паспорта также выполняют теплотехнический расчет ограждающих конструкций, пример оформления паспорта дан в приложении к СП50.13330.2012.

Коэффициент однородности

Все приведенные выше расчеты применимы для однородных конструкций. Что на практике встречается довольно редко. Чтобы учесть неоднородности, снижающие сопротивление теплопередаче, вводится поправочный коэффициент теплотехнической однородности - r. Он учитывает изменение сопротивления теплопередаче, вносимые оконными и дверными проемами, внешними углами, неоднородными включениями (например перемычками, балками, армирующими поясами), и пр.

Расчет этого коэффициента достаточно сложен, поэтому в упрощенном виде можно воспользоваться примерными значениями из справочной литературы. Например, для кирпичной кладки - 0,9, трехслойных панелей - 0,7.

Эффективное утепление

Выбирая систему утепления дома, легко убедиться, что выполнить современные требования тепловой защиты без использования эффективного утеплителя практически невозможно. Так, если использовать традиционный глиняный кирпич, потребуется кладка толщиной в несколько метров, что экономически нецелесообразно. Вместе с тем низкая теплопроводность современных утеплителей на основе пенополистирола либо каменной ваты позволяет ограничиться толщинами в 10-20 см.

Например, чтобы достичь базового значения сопротивления теплопередаче 3,65 (м х град/Вт), потребуется:

Чтобы в жилище было тепло в самые сильные морозы, необходимо правильно подобрать систему теплоизоляции – для этого выполняют теплотехнический расчет наружной стены.Результат вычислений показывает, насколько эффективен реальный или проектируемый способ утепления.

Как сделать теплотехнический расчет наружной стены

Вначале следует подготовить исходные данные. На расчетный параметр влияют следующие факторы:

  • климатический регион, в котором находится дом;
  • назначение помещения – жилой дом, производственное здание, больница;
  • режим эксплуатации здания – сезонный или круглогодичный;
  • наличие в конструкции дверных и оконных проемов;
  • влажность внутри помещения, разница внутренней и наружной температуры;
  • число этажей, особенности перекрытия.

После сбора и записи исходной информации определяют коэффициенты теплопроводности строительных материалов, из которых изготовлена стена. Степень усвоения тепла и теплоотдачи зависит от того, насколько сырым является климат. В связи с этим для вычисления коэффициентов используют карты влажности, составленные для Российской Федерации. После этого все числовые величины, необходимые для расчета, вводятся в соответствующие формулы.

Теплотехнический расчет наружной стены, пример для пенобетонной стены

В качестве примера рассчитываются теплозащитные свойства стены, выложенной из пеноблоков, утепленной пенополистиролом с плотностью 24 кг/м3 и оштукатуренной с двух сторон известково-песчаным раствором. Вычисления и подбор табличных данных ведутся на основании строительных правил. Исходные данные: район строительства – Москва; относительная влажность – 55%, средняя температура в доме tв = 20О С. Задается толщина каждого слоя: δ1, δ4=0,01м (штукатурка), δ2=0,2м (пенобетон), δ3=0,065м (пенополистирол «СП Радослав»).
Целью теплотехнического расчета наружной стены является определение необходимого (Rтр) и фактического (Rф) сопротивления теплопередаче.
Расчет

  1. Согласно таблице 1 СП 53.13330.2012 при заданных условиях режим влажности принимается нормальным. Требуемое значениеRтр находят по формуле:
    Rтр=a ГСОП+b,
    где a,b принимаются по таблице 3 СП 50.13330.2012. Для жилого здания и наружной стены a = 0,00035; b = 1,4.
    ГСОП – градусо-сутки отопительного периода, их находят по формуле(5.2) СП 50.13330.2012:
    ГСОП=(tв-tот)zот,
    где tв=20О С; tот – средняя температура наружного воздуха во время отопительного периода, по таблице 1 СП131.13330.2012tот = -2,2ОС; zот = 205 сут. (продолжительность отопительного сезона согласно той же таблице).
    Подставив табличные значения, находят: ГСОП = 4551О С*сут.; Rтр = 2,99 м2*С/Вт
  2. По таблице 2 СП50.13330.2012 для нормальной влажности выбирают коэффициенты теплопроводности каждого слоя «пирога»:λБ1=0,81Вт/(м°С), λБ2=0,26Вт/(м°С), λБ3=0,041Вт/(м°С), λБ4=0,81Вт/(м°С).
    По формуле E.6 СП 50.13330.2012 определяют условное сопротивление теплопередаче:
    R0усл=1/αint+δn/λn+1/αext.
    гдеαext = 23 Вт/(м2°С) из п.1 таблицы 6 СП 50.13330.2012 для наружных стен.
    Подставляя числа, получаютR0усл=2,54м2°С/Вт. Уточняют его с помощью коэффициента r=0.9, зависящего от однородности конструкций, наличия ребер, арматуры, мостиков холода:
    Rф=2,54 0,9=2,29м2 °С/Вт.

Полученный результат показывает, что фактическое теплосопротивление меньше требуемого, поэтому нужно пересмотреть конструкцию стены.

Теплотехнический расчет наружной стены, программа упрощает вычисления

Несложные компьютерные сервисы ускоряют вычислительные процессы и поиск нужных коэффициентов. Стоит ознакомиться с наиболее популярными программами.

  1. «ТеРеМок». Вводятся исходные данные: тип здания (жилой), внутренняя температура 20О, режим влажности – нормальный, район проживания – Москва. В следующем окне открывается рассчитанное значение нормативного сопротивления теплопередаче – 3,13 м2*оС/Вт.
    На основании вычисленного коэффициента происходит теплотехнический расчет наружной стены из пеноблоков (600 кг/м3), утепленной экструдированным пенополистиролом «Флурмат 200» (25 кг/м3) и оштукатуренной цементно-известковым раствором. Из меню выбирают нужные материалы, проставляя их толщину (пеноблок – 200 мм, штукатурка – 20 мм), оставив незаполненной ячейку с толщиной утеплителя.
    Нажав кнопку «Расчет», получают искомую толщину слоя теплоизолятора – 63 мм. Удобство программы не избавляет ее от недостатка: в ней не принимается во внимание разная теплопроводность кладочного материала и раствора. Спасибо автору можно сказать по этому адресу http://dmitriy.chiginskiy.ru/teremok/
  2. Вторая программа предлагается сайтом http://rascheta.net/. Ее отличие от предыдущего сервиса в том, что все толщины задаются самостоятельно. В расчет вводится коэффициент теплотехнической однородности r. Его выбирают из таблицы: для пенобетонных блоков с проволочной арматурой в горизонтальных швах r = 0,9.
    После заполнения полей программа выдает отчет о том, каково фактическое тепловое сопротивление выбранной конструкции, отвечает ли она климатическим условиям. Кроме того, предоставляется последовательность вычислений с формулами, нормативными источниками и промежуточными значениями.

При возведении дома или проведении теплоизоляционных работ важна оценка результативности утепления наружной стены: теплотехнический расчет, выполненный самостоятельно или с помощью специалиста позволяет сделать это быстро и точно.

Сейчас, во времена постоянно растущих цен на энергоносители, качественное утепление стало одной из первоочередных задач при возведении новых и ремонте уже построенных домов. Затраты на работы, связанные с повышением энергоэффективности дома, практически всегда окупаются в течение нескольких лет. Главное при их выполнении не наделать ошибок, которые сведут все старания на нет в лучшем случае, в в худшем — ещё и навредят.

Современный рынок строительных материалов просто завален всевозможными утеплителями. К сожалению, производители, или точнее будет сказать, продавцы делают всё, чтобы мы, рядовые застройщики, выбрали именно их материал и отдали свои деньги именно им. А приводит это к тому, что в различных источниках информации (особенно в интернете) появляется много ошибочных и вводящих в заблуждение рекомендаций и советов. Запутаться в них простому человеку довольно легко.

Справедливости ради нужно сказать, что современные утеплители действительно довольно эффективны. Но чтобы использовать их свойства на все сто процентов, во-первых, должен производиться правильный, соответствующий инструкции производителя, монтаж и, во-вторых, применение утеплителя должно всегда быть уместным и целесообразным в каждом конкретном случае. Так как же сделать правильное и эффективное утепление дома? Попробуем разобраться с этим вопросом подробнее…

Ошибки при утеплении дома

Можно выделить три основные ошибки, которые наиболее часто допускают застройщики:

  • неправильный подбор материалов и их последовательности для «пирога» ограждающей конструкции (стены, пола, крыши…);
  • несоответствующая нормам, выбранная «на авось» толщина слоя утеплителя;
  • неправильный монтаж с несоблюдением технологии для каждого конкретного вида утеплителя.

Последствия этих ошибок могут быть весьма печальными. Это и ухудшении микроклимата в доме с повышением влажности и постоянным запотеванием окон в холодное время года, и появление конденсата в тех местах, где это не допустимо, и появление неприятно пахнущего грибка с постепенным загниванием внутренней отделки либо ограждающих конструкций.

Выбор способа утепления

Самое главное правило, которому лучше следовать всегда, гласит — утепляйте дом снаружи, а не изнутри! Значение этой важной рекомендации наглядно продемонстрировано на следующем рисунке:

Сине-красная линия на рисунке отображает изменение температуры в толще «пирога» стены. По ней прекрасно видно, что если утепление производить изнутри, в холодное время года стена будет промерзать.

Вот к примеру такой случай, кстати основанный на вполне реальных событиях. Живёт хороший человек в угловой квартире многоэтажного панельного дома и зимой, особенно в ветреную погоду, мёрзнет. Тогда он решает утеплить холодную стену. А так как квартира его на пятом этаже, то ничего лучше, чем утеплить изнутри, придумать не получается. При этом в один субботний полдень он по телевизору смотрит передачу о ремонте и видит, как там в похожей квартире утепляют стены тоже изнутри при помощи матов из минеральной ваты.

И всё там показали вроде бы правильно и красиво: выставили каркас, заложили утеплитель, закрыли его пароизоляционной плёнкой и обшили гипсокартоном. Но только не объяснили, что использовали минеральную вату не потому, что это самый подходящий материал для утепления стен изнутри, а потому, что спонсором их сегодняшнего выпуска является крупный производитель минераловатных утеплителей.

И вот наш хороший человек решает это повторить. Делает всё также, как по телевизору, и в квартире сразу становится ощутимо теплее. Только радость его от этого длится не долго. Через некоторое время он начинает ощущать, что в комнате появился какой-то посторонний запах и воздух стал как-будто тяжелее. А ещё через несколько дней внизу стены на гипсокартоне стали проявляться тёмные сырые пятна. Хорошо ещё, что обои не успел поклеить. Так что же случилось?

А случилось то, что панельная стена, закрытая от внутреннего тепла слоем утеплителя, быстро промёрзла. Водяные пары, которые содержатся в воздухе и из-за разницы парциальных давлений всегда стремятся изнутри тёплого помещения наружу, стали попадать в утеплитель, несмотря на сделанную пароизоляцию, через плохо проклеенные или вообще не проклеенные стыки, через дырки от скобок степлера и саморезов крепления гипсокартона. При контакте паров с промёрзшей стеной, на ней начал выпадать конденсат. Утеплитель стал сыреть и накапливать всё больше влаги, что и привело к неприятному затхлому запаху и появлению грибка. Кроме того намокшая минеральная вата быстро теряет свои теплосберегающие свойства.

Встаёт вопрос — что же тогда человеку делать в данной ситуации? Ну для начала нужно всё таки постараться найти возможность сделать утепление снаружи. Благо сейчас всё больше появляется организаций, занимающихся такими работами вне зависимости от высоты. Конечно, их расценки многим покажутся очень высокими — 1000÷1500 руб.за 1м² под ключ. Но это только на первый взгляд. Если в полном объёме посчитать все затраты при внутреннем утеплении (утеплитель, его обшивка, шпаклёвки, грунтовки, новая покраска или новые обои плюс зарплата работникам), то в итоге разница с наружным утеплением становится не принципиальной и конечно лучше предпочесть именно его.

Другое дело, если нет возможности получить разрешение на наружное утепление (напр., дом имеет какие-то архитектурные особенности). В этом крайнем случае, если уж Вы решились утеплить стены изнутри, используйте утеплители с минимальной (почти нулевой) паропроницаемостью, такие как пеностекло, экструдированный пенополистирол.

Пеностекло является более экологичным материалом, но к сожалению и более дорогим. Так если 1 м³ экструдированнного пенополистирола стоит около 5000 рублей, то 1 м³ пеностекла — около 25000 рублей, т.е. в пять раз дороже.

Подробно о технологии внутреннего утепления стен будет говорится в отдельной статье. Сейчас отметим лишь тот момент, что при монтаже утеплителя необходимо по максимуму исключать нарушение его целостности. Так, например, ЭППС лучше к стене приклеивать и от дюбелей отказаться совсем (как на рисунке), либо свести их число к минимуму. В качестве отделки утеплитель покрывают гипсовыми штукатурными смесями, либо также обклеивают листами гипсокартона без всяких каркасов и без всяких саморезов.

Как определить нужную толщину утеплителя?

С тем, что утепление дома лучше производить снаружи, чем изнутри, мы более или менее разобрались. Теперь следующий вопрос — а сколько нужно заложить утеплителя в каждом конкретном случае? Зависеть это будет от следующих параметров:

  • какие климатические условия в данном регионе;
  • какой требуемый микроклимат в помещении;
  • какие материалы составляют «пирог» ограждающей конструкции.

Немного о том, как им пользоваться:

Расчёт утепления стен дома

Допустим «пирог» нашей стены состоит из слоя гипсокартона — 10 мм (внутренняя отделка), газосиликатного блока D-600 — 300 мм, минераловатного утеплителя — ? мм и сайдинга.

Вносим в программу исходные данные в соответствии со следующим скриншотом:

Итак по пунктам:

1) Расчет выполнить согласно: — оставляем точку напротив «СП 50.13330.2012 и СП 131.13330.2012», как мы видим эти нормы более свежие.

2) Населенный пункт: — выбираем «Москва» либо любой другой, который есть в списке и к Вам ближе.

3) Тип зданий и помещений — устанавливаем «Жилые.»

4) Вид ограждающей конструкции — выбираем «Наружные стены с вентилируемым фасадом.» , так как наши стены обшиты снаружи сайдингом.

5) Расчетная средняя температура и относительная влажность внутреннего воздуха определяются автоматически, мы их не трогаем.

6) Коэффициент теплотехнической однородности «r» — его значение выбираем нажав на знак вопроса. Ищем, что нам подходит в появившихся таблицах. Если ничего не подходит — принимаем значение «r» из указаний Мосгосэкспертизы (указаны вверху страницы над таблицами). Для нашего примера мы взяли значение r=0,85 для стен с оконными проёмами.

Данный коэффициент в большинстве подобных онлайн-программ для теплотехнического расчёта отсутствует. Его введение делает расчёт более точным, так как он характеризует неоднородность материалов стены. К примеру, при расчёте кирпичной кладки этот коэффициент учитывает наличие растворных швов, теплопроводность которых значительно больше, чем у самого кирпича.

7) Опции расчёта: — ставим галочки напротив пунктов «Расчёт сопротивления паропроницанию» и «Расчёт точки росы».

8) Вносим в таблицу материалы, составляющие наш «пирог» стены. Обратите внимание — принципиально важно вносить их в очерёдности от наружного слоя к внутреннему.

Примечание: Если стена имеет наружный слой материала отделённый прослойкой вентилируемого воздуха (в нашем примере это сайдинг), этот слой в расчёт не включают. Он уже учтён при выборе вида ограждающей конструкции.

Итак, мы внесли в таблицу следующие материалы — минераловатный утеплитель KNAUF, газосиликат плотностью 600 кг/м³ и известково-песчаную штукатурку. При этом автоматически появляются значения коэффициентов теплопроводности (λ) и паропроницаемости (μ).

Толщины слоёв газосиликата и штукатурки нам известны изначально, вносим их в таблицу в миллиметрах. А искомую толщину утеплителя подбираем до тех пор, пока под таблицей не появится надпись «R 0 пр >R 0 норм (… > …) конструкция соответствует требованиям по теплопередаче. «

В нашем примере условие начинает выполняться при толщине минеральной ваты равной 88 мм. Округляем это значение в большую сторону до 100 мм, так как именно такая толщина имеется в продаже.

Также под таблицей мы видим надписи, говорящие о том, что влагонакопление в утеплителе невозможно и выпадение конденсата невозможно . Это свидетельствует о правильно выбранной схеме утепления и толщине слоя утеплителя.

Кстати данный расчёт позволяет нам увидеть то, о чём говорилось в первой части этой статьи, а именно, почему утепление стен изнутри лучше не делать. Поменяем слои местами, т.е. поставим утеплитель внутрь помещения. Что при этом получается смотрите на следующем скриншоте:

Видно, что хотя конструкция по прежнему соответствует требованиям по теплопередаче, но условия паропроницаемости уже не выполняются и возможно выпадение конденсата, о чём сказано под табличкой материалов. О последствиях этого говорилось выше.

Ещё одним достоинством данной онлайн-программы является то, что нажав на кнопку «Отчёт » внизу страницы, можно получить весь проведённый теплотехнический расчёт в виде формул и уравнений с подстановкой всех значений. Кому то это возможно будет интересно.

Расчёт утепления чердачного перекрытия

Пример теплотехнического расчёта чердачного перекрытия показан на следующем скриншоте:

Отсюда видно, что в данном примере необходимая толщина минеральной ваты для утепления чердака составляет не менее 160 мм. Перекрытие — по деревянным балкам, «пирог» составляют — утеплитель, сосновые доски толщиной 25 мм, ДВП — 5 мм, воздушный зазор — 50 мм и подшивка гипсокартоном — 10 мм. Воздушный зазор присутствует в расчёте из-за наличия каркаса под гипсокартон.

Расчёт утепления цокольного перекрытия

Пример теплотехнического расчёта для цокольного перекрытия показан на следующем скриншоте:

В данном примере, когда цокольное перекрытие является монолитным железобетонным толщиной 200 мм и в доме есть неотапливаемое подполье, минимально необходимая толщина утепления экструдированным пенополистиролом составляет около 120 мм.

Таким образом выполнение теплотехнического расчёта позволяет правильно скомпоновать «пирог» ограждающей конструкции, выбрать необходимую толщину каждого слоя и в конце концов выполнить эффективное утепление дома. После этого главное произвести качественный и правильный монтаж утеплителя. Выбор их сейчас очень большой и в работе с каждым есть свои особенности. Об этом обязательно будет говориться в других статьях нашего сайта, посвящённых теме утепления жилища.

Будем рады видеть Ваши комментарии по данной теме!