Динамические оперативные запоминающие устройства (ОЗУ). Типы микросхем динамических озу Динамическое озу

Оперативная память – это область памяти, с которой процессор интенсивно взаимодействует во время работы компьютера. В ней (после загрузки) хранятся активные программы и данные, используемые в течение одного сеанса работы компьютера. Перед выключением компьютера или перед нажатием кнопки сброса (Reset) результаты работы (полученные данные) необходимо сохранить в энергонезависимом запоминающем устройстве (например, на жестком диске).

Эта глава посвящена структурно-функциональной и логической организации оперативной памяти. В ней рассматриваются принципы построения, функционирования и основные характеристики ОЗУ; структура оперативной памяти, разбивка ее на области и назначение этих областей; основные типы микросхем ОЗУ, модули оперативной памяти и т.д.

Элементы памяти

Название "динамические ОЗУ" обусловлено элементами памяти, в качестве которых используются конденсаторы небольшой емкости, способные, как показано ниже, хранить заряд. В реальных условиях конденсатор разряжается и требуется постоянная периодическая его подзарядка. Поэтому память на основе емкостных элементов является динамической памятью, чем она принципиально отличается от статической памяти, реализуемой на бистабильных ячейках, способных хранить информацию при включенном питании сколь угодно долго. Таким образом, динамическое хранение данных означает прежде всего возможность многократной записи информации в оперативную память, а также необходимость периодического (примерно через каждые 15 мс) обновления, или перезаписи, данных.

При использовании емкостных элементов памяти удается на одном кристалле размещать миллионы ячеек и получать самую дешевую полупроводниковую память достаточно высокого быстродействия с умеренным энергопотреблением. Благодаря этому динамические ОЗУ являются основной памятью компьютера.

О возможности использования конденсатора как элемента памяти. Идеальный конденсатор представляет собой двухполюсник, заряд которого Q является линейной функцией напряжения U (рис. 10.1,а ). Если к идеальному конденсатору С через ключ К подвести напряжение U от источника ЭДС (рис. 10.1,6), то на конденсаторе появится постоянный заряд Q в соответствии с вольт-кулонной характеристикой (рис. 10.1,а). При постоянстве заряда (Q = const) ток в цепи не протекает (/= AQ/At= 0), поэтому размыкание ключа (рис. 10.1,в) не изменит состояния конденсатора С, т.е. на конденсаторе по-прежнему останутся 0 = const и U= const. Следовательно, конденсатор обладает способностью хранить заряд Qw напряжение U.

Рис. 10.1. Вольт-кулонная характеристика идеального конденсатора (а), его состояние при замкнутом (б) и разомкнутом (в) ключе К, схема разряда конденсатора С через резистор R (г)

Реальные конденсаторы обладают потерями, кроме того, для реализации режимов записи и считывания к конденсаторам подключаются внешние цепи, которые также имеют потери. Потери моделируются активным сопротивлением R , подключенным параллельно конденсатору С (рис. 10.1,г). В этих условиях при размыкании ключа К в цепи на рис. 10.1,5 через резистор R начнет протекать ток / (рис. 10.1,г) и накопленная в конденсаторе С энергия электрического поля будет преобразовываться в тепловую энергию, выделяемую на резисторе R. В процессе разряда конденсатор теряет свой заряд, и напряжение на его полюсах уменьшается. Поэтому, как отмечалось выше, использование конденсаторов в качестве элементов памяти требует периодического восстановления (регенерации) напряжения.

О реализации емкостного элемента памяти. Основой для построения емкостных элементов памяти служат МОП- транзисторы. В настоящее время широкое распространение получили однотранзисторные структуры, которые помимо емкостного элемента памяти располагают средством подключения его к разрядной шине. Структура однотранзисторного элемента памяти изображена на рис. 10.2,а и представляет собой n-МОП-транзистор, в котором сток, выполненный из поликремния, не имеет внешнего вывода. Сток транзистора образует одну обкладку конденсатора, подложка – другую. Диэлектриком между обкладками служит тонкий слой оксида кремния Si О 2. Структура исток – затвор – сток выполняет функции транзисторного ключа. Схема элемента памяти приведена на рис. 10.2,6.

Однотранзисторный емкостной элемент памяти проще элемента памяти статического ОЗУ, содержащего 6 транзисторов (рис. 10.2,а ). Благодаря тому что на кристалле удается разместить больше элементов памяти, динамические ОЗУ имеют значительно большую емкость памяти, чем их статические аналоги.

Рис. 10.2. Структура элемента памяти динамического ОЗУ (а) и его эквивалентная схема (б)

Работа элемента памяти в динамическом ОЗУ. Использование емкостных элементов памяти в ЗУ отражается на структуре накопителя. Помимо элементов памяти накопитель содержит дополнительные узлы и компоненты, обеспечивающие необходимые условия для нормачьного его функционирования. Для рассмотрения принципов работы элемента памяти в динамическом ОЗУ воспользуемся схемой, представленной на рис. 10.3,а. Затворы транзисторных ключей элементов памяти подключаются к адресным шинам (строкам), истоки – к разрядным шинам (столбцам).

При отсутствии напряжения на адресной шине транзистор УТ 1 заперт и конденсатор Сэп элемента памяти отключен от разрядной шины. Элемент памяти работает в режиме хранения.

При поступлении напряжения на адресную шину и, следовательно, на затвор транзисторного ключа VT 1 элемент памяти подсоединяется к разрядной шине. В зависимости от значения сигнала чтения/записи возможно два режима работы емкостного элемента памяти.

В режиме записи с помощью управляющих сигналов, подаваемых на затворы транзисторных ключей VT 3 или VT 4, в элемент памяти можно записать соответственно логические нуль или единицу. При этом логическому нулю соответствует нулевое значение напряжения на конденсаторе Сэп, логической единице – напряжение, равное Е.

Рис. 10.3.

В режиме считывания в силу большой протяженности разрядной шины и большого числа различных элементов, подключенных к ней, шина обладает емкостью СY, многократно превышающей емкость Сэп элемента памяти. Для считывания информации с разрядной шины при подключении к ней емкостного элемента памяти необходимо располагать точным значением напряжения на шине. Поэтому перед считыванием на разрядную шину подается фиксированное напряжение, равное напряжению источника питания Е или Е/ 2, для подзаряда емкости Су. После этого элемент памяти подключается к разрядной шине.

Анализ показывает , что:

  • при считывании на элементе памяти происходит изменение напряжения на ±рЕ/ 2, где р = Сэп/Сусчитывание является разрушающим процессом и требует восстановления исходной информации;
  • напряжение на разрядной шине в режиме считывания изменяется в незначительных пределах , что затрудняет точную фиксацию хранимых в элементе памяти данных.

Для преодоления указанных недостатков принимают следующие меры:

  • для восстановления заряда элемента памяти вводят циклы регенерации;
  • увеличивают емкость СЭп элемента памяти, например, путем использования диэлектрика с бо́льшим значением диэлектрической проницаемости;
  • уменьшают емкость C yразрядной шины едва раза путем разделения ее на две подушины;
  • для считывания используют высокочувствительные дифференциальные усилители с положительной обратной связью – усилители- регенераторы.

Большинство из применяемых в настоящее время типов микросхем оперативной памяти не в состоянии сохранять данные без внешнего источника энергии, т.е. являются энергозависимыми (volatile memory). Широкое распространение таких устройств связано с рядом их достоинств по сравнению с энергонезависимыми типами ОЗУ (non-volatile memory): большей емкостью, низким энергопотреблением, более высоким быстродействием и невысокой себестоимостью хранения единицы информации.

Энергозависимые ОЗУ можно подразделить на две основные подгруппы: динамическую память (DRAM - Dynamic Random Access Memory) и статическую память (SRAM - Static Random Access Memory).

Статическая и динамическая оперативная память

В статических ОЗУ запоминающий элемент может хранить записанную информацию неограниченно долго (при наличии питающего напряжения). Запоминающий элемент динамического ОЗУ способен хранить информацию только в течение достаточно короткого промежутка времени, после которого информацию нужно восстанавливать заново, иначе она будет потеряна. Динамические ЗУ, как и статические, энергозависимы.

Роль запоминающего элемента в статическом ОЗУ исполняет триггер. Такой триггер представляет собой схему с двумя устойчивыми состояниями, обычно состоящую из четырех или шести транзисторов (рис. 5.7). Схема с четырьмя транзисторами обеспечивает большую емкость микросхемы, а следовательно, меньшую стоимость, однако у такой схемы большой ток утечки, когда информация просто хранится. Также триггер на четырех транзисторах более чувствителен к воздействию внешних источников излучения, которые могут стать причиной потери информации. Наличие двух дополнительных транзисторов позволяет в какой-то мере компенсировать упомянутые недостатки схемы на четырех транзисторах, но, главное - увеличить быстродействие памяти.

Рис. 5.7. Запоминающий элемент статического ОЗУ

Запоминающий элемент динамической памяти значительно проще. Он состоит из одного конденсатора и запирающего транзистора (рис. 5.8).

Рис. 5.8. Запоминающий элемент динамического ОЗУ

Наличие или отсутствие заряда в конденсаторе интерпретируются как 1 или 0 соответственно. Простота схемы позволяет достичь высокой плотности размещения ЗЭ и, в итоге, снизить стоимость. Главный недостаток подобной технологии связан с тем, что накапливаемый на конденсаторе заряд со временем теряется. Даже при хорошем диэлектрике с электрическим сопротивлением в несколько тераом (10 12 Ом) используемом при изготовлении элементарных конденсаторов ЗЭ, заряд теряется достаточно быстро. Размеры у такого конденсатора микроскопические, а емкость имеет порядок 1СГ 15 Ф. При такой емкости на одном конденсаторе накапливается всего около 40 000 электронов. Среднее время утечки заряда ЗЭ динамической памяти составляет сотни или даже десятки миллисекунд, поэтому заряд необходимо успеть восстановить в течение данного отрезка времени, иначе хранящаяся информация будет утеряна. Периодическое восстановление заряда ЗЭ называется регенерацией и осуществляется каждые 2-8 мс,

В различных типах ИМС динамической памяти нашли применение три основных метода регенерации:

Одним сигналом RAS (ROR - RAS Only Refresh);

Сигналом CAS, предваряющим сигнал RAS (CBR - CAS Before RAS);

Автоматическая регенерация (SR - Self Refresh).

Регенерация одним RAS использовалась еще в первых микросхемах DRAM. На шину адреса выдается адрес регенерируемой строки, сопровождаемый сигналом RAS. При этом выбирается строка ячеек и хранящиеся там данные поступают на внутренние цепи микросхемы, после чего записываются обратно. Так как сигнал CAS не появляется, цикл чтения/записи не начинается. В следующий раз на шину адреса подается адрес следующей строки и т. д., пока не восстановятся все ячейки, после чего цикл повторяется. К недостаткам метода можно отнести занятость шины адреса в момент регенерации, когда доступ к другим устройствам ВМ блокирован.

Особенность метода CBR в том, что если в обычном цикле чтения/записи сигнал RAS всегда предшествует сигналу CAS, то при появлении сигнала CAS первым начинается специальный цикл регенерации. В этом случае адрес строки не передается, а микросхема использует свой внутренний счетчик, содержимое которого увеличивается на единицу при каждом очередном CBR-цикле. Режим позволяет регенерировать память, не занимая шину адреса, то есть более эффективен.

Автоматическая регенерация памяти связана с энергосбережением, когда система переходит в режим «сна» и тактовый генератор перестает работать. При отсутствии внешних сигналов RAS и CAS обновление содержимого памяти методами ROR или CBR невозможно, и микросхема производит регенерацию самостоятельно, запуская собственный генератор, который тактирует внутренние цепи регенерации.

Область применения статической и динамической памяти определяется скоростью и стоимостью. Главным преимуществом SRAM является более высокое быстродействие (примерно на порядок выше, чем у DRAM). Быстрая синхронная SRAM может работать со временем доступа к информации, равным времени одного тактового импульса процессора. Однако из-за малой емкости микросхем и высокой стоимости применение статической памяти, как правило, ограничено относительно небольшой по емкости кэш-памятью первого (L1), второго (L2) или третьего (L3) уровней. В то же время самые быстрые микросхемы динамической памяти на чтение первого байта пакета все еще требуют от пяти до десяти тактов процессора, что замедляет работу всей ВМ. Тем не менее благодаря высокой плотности упаковки ЗЭ и низкой стоимости именно DRAM используется при построении основной памяти ВМ.

Оперативные запоминающие устройства

Режим удвоенной скорости

Пакетный режим

Пакетный режим (Burst Mode) - режим, при котором на запрос по конкретному

адресу память возвращает пакет данных, хранящихся не только по этому адресу,

но и по нескольким последующим адресам.

Разрядность ячейки памяти современных ВМ обычно равна одному байту, в то

время как ширина шины данных, как правило, составляет четыре байта. Следова-

тельно, одно обращение к памяти требует последовательного доступа к четырем смеж-

ным ячейкам - пакету1. С учетом этого обстоятельства в ИМС памяти часто использу-

ется модификация страничного режима, носящая название группового или пакетного

режима. При его реализации адрес столбца заносится в ИМС только для первой ячей-

ки пакета, а переход к очередному столбцу производится уже внутри микросхемы.

Это позволяет для каждого пакета исключить три из четырех операций занесения

в ИМС адреса столбца и тем самым еще более сократить среднее время доступа.

Важным этапом в дальнейшем развитии технологии микросхем памяти стал ре-

жим DDR (Double Data Rate) - удвоенная скорость передачи данных. Сущность

метода заключается в передаче данных по обоим фронтам импульса синхрониза-

ции, то есть дважды за период. Таким образом, пропускная способность увеличи-

вается в те же два раза.

Помимо упомянутых используются и другие приемы повышения быстродей-

ствия ИМС памяти, такие как включение в состав микросхемы вспомогательной

кэш-памяти и независимые тракты данных, позволяющие однов

Большинство из применяемых в настоящее время типов микросхем оперативной

памяти не в состоянии сохранять данные без внешнего источника энергии, то есть

являются энергозависимыми (volatile memory). Широкое распространение таких

устройств связано с рядом их достоинств по сравнению с энергонезависимыми

типами ОЗУ (non-volatile memory): большей емкостью, низким энергопотребле-

нием, более высоким быстродействием и невысокой себестоимостью хранения еди-

ницы информации.

Энергозависимые ОЗУ можно подразделить на две основные подгруппы: ди-

намическую память (DRAM - Dynamic Random, Access Memory) и статическую

память (SRAM - Static Random Access Memory).

В статических ОЗУ запоминающий элемент может хранить записанную инфор-

мацию неограниченно долго (при наличии питающего напряжения). Запоминаю-

щий элемент динамического ОЗУ способен хранить информацию только в течение

достаточно короткого промежутка времени, после которого информацию нужно

восстанавливать заново, иначе она будет потеряна. Динамические ЗУ, как и стати-



ческие, энергозависимы.

Роль запоминающего элемента в статическом ОЗУ исполняет триггер. Такой

триггер представляет собой схему с двумя устойчивыми состояниями, обычно со-

стоящую из четырех или шести транзисторов (рис. 5.7). Схема с четырьмя транзи-

сторами обеспечивает большую емкость микросхемы, а следовательно, меньшую

стоимость, однако у такой схемы большой ток утечки, когда информация просто

хранится. Также триггер на четырех транзисторах более чувствителен к воздей-

ствию внешних источников излучения, которые могут стать причиной потери ин-

формации. Наличие двух дополнительных транзисторов позволяет в какой-то мере

компенсировать упомянутые недостатки схемы на четырех транзисторах, но, глав-

ное - увеличить быстродействие памяти.

Запоминающий элемент динамической памяти значительно проще. Он состо-

ит из одного конденсатора и запирающего транзистора (рис. 5.8).

Наличие или отсутствие заряда в конденсаторе интерпретируется как 1 или О

соответственно. Простота схемы позволяет достичь высокой плотности размеще-

ния ЗЭ и, в итоге, снизить стоимость. Главный недостаток подобной технологии

связан с тем, что накапливаемый на конденсаторе заряд со временем теряется. Даже

при хорошем диэлектрике с электрическим сопротивлением в несколько тераом

(1012 Ом), используемом при изготовлении элементарных конденсаторов ЗЭ, за-

ряд теряется достаточно быстро. Размеры у такого конденсатора микроскопичес-

кие, а емкость имеет порядок 10-15 Ф. При такой емкости на одном конденсаторе

накапливается всего около 40 000 электронов. Среднее время утечки заряда ЗЭ

динамической памяти составляет сотни или даже десятки миллисекунд, поэтому

заряд необходимо успеть восстановить в течение данного отрезка времени, иначе

хранящаяся информация будет утеряна. Периодическое восстановление заряда ЗЭ

называется регенерацией и осуществляется каждые 2-8 мс.

В различных типах ИМС динамической памяти нашли применение три основ-

ных метода регенерации:

Одним сигналом RAS (RОR - RAS Only Refresh);

Сигналом CAS, предваряющим сигнал RAS(CBR - CAS Before RAS);

Автоматическая регенерация (SR - Self Refresh).

Регенерация одним RAS использовалась еще в первых микросхемах DRAM.

ПЗУ с электрическим стиранием

ПЗУ с УФ стиранием

ПЗУ со стиранием информации ультрафиолетовым излучением в настоящее время наиболее широко используются в микропроцессорных системах. В БИС таких ПЗУ каждый бит хранимой информации отображается состоянием соответствующего МОП-транзистора с плавающим затвором (у него нет наружного вывода для подключения). Затворы транзисторов при программировании «1» заряжаются лавинной инжекцией, т.е. обратимым пробоем изолирующего слоя, окружающего затвор под действием электрического импульса напряжением 18 – 26 В. Заряд, накопленный в затворе, может сохраняться очень долго из-за высокого качества изолирующего слоя. Так, например, для ППЗУ серии К573 гарантируется сохранение информации не менее 15 – 25 тысяч часов во включенном состоянии и до 100 тысяч часов (более 10 лет) - в выключенном.

Они позволяют производить как запись, так и стирание (или перезапись) информации с помощью электрических сигналов. Для построения таких ППЗУ применяются структуры с лавинной инжекцией заряда, аналогичные тем, на которых строятся ППЗУ с УФ стиранием, но с дополнительными управляющими затворами, размещаемыми над плавающими затворами. Подача напряжения на управляющий затвор приводит к рассасыванию заряда за счет туннелирования носителей сквозь изолирующий слой и стиранию информации. По этой технологии изготовляют микросхемы К573РР2.

Достоинства ППЗУ с электрическим стиранием: высокая скорость перезаписи информации и значительное допустимое число циклов перезаписи - не менее 10000.

15.2.1 Статические ОЗУ

Рассматриваемые типы запоминающих устройств (ЗУ) применяются в компьютерах для хранения информации, которая изменя­ется в процессе вычислений, производимых в соответствии с программой, и называются оператив­ными (ОЗУ). Информация, записанная в них, раз­рушается при отключении питания.

Главной частью ЗУ является накопитель, состоящий из триггеров

Рисунок 4.6 – Матрица ЗУ

Накопитель двухкоордииатпого ЗУ состоит из нескольких матриц (Рисунок 4.6), количество которых определяется числом разрядов записываемого слова. Запоминаю­щие элементы(ЗЭ) одной матрицы расположены на пересечении адресных шин Х строк и Y столбцов, имеют одну общую для всех элементов разрядную шину. В ЗЭ одной матрицы записываются одноимен­ные разряды всех слов, а каждое слово - в идентично расположенные запоминающие элементы ЗЭ i , всех матриц, составляющие ячейку памяти. Таким обра­зом, в двухкоординатное четырехматричное ЗУ, матрицы которого содержат по 16 запоминающих элемен­тов (рис. 4), можно записать 16 четырехразрядных слов.



В них запоминающий элемент содержит только один транзисторн. (рис.15-5)

Рисунок 4.7 – Элемент динамической ОЗУ

Информация в таком элементе хранится в виде заря­да на запоминающем конденсаторе, обкладками которо­го являются области стока МОП-транзистора и подлож­ки. Запись и считывание ннформаини производятся пу­тем открывания транзистора по затвору и подключения тем самым заноминаюшей емкости к схеме усилителя-регенератора. Последний, по существу является триггерным элементом,который В зависимости от предварительной подготовки или принимает (счи­тывает) цнформацию из емкоетной запоминающец ячейки, устаиавливаясь при этом в состояние 0 пли 1,или, наоборот, в режиме записи соотвегствующим образом заряжает ячейку, будучи иредварительно установленным в 0 нли 1

В режиме чтения триггер усилителя - регенератора в иачале специальным управляющим сигналом устанав­ливается в неустойчивое равновесное состояние, из которого при подключении к нему запоминающей емкости

он переключается в 0 или I. При этом в начале он по­требляет часть заряда, а затем при установке в усгойчивое состояние, возвращает его ячейке осуществляя таким образом регенерацию ее состояния. В режиме хранения информации необходимо периодически производить регенерацию для компенсации ес­тественных утечек заряда.максимальный период цикла регенерации для каждой из ячеек обычно составляет 1 - 2 мс.

Динамические оперативные запоминающие устройства (ОЗУ)

Статические оперативные запоминающие устройства позволяют обеспечивать хранение записанной информации до тех пор, пока на микросхему подаЈтся питание. Однако запоминающая ячейка статического ОЗУ занимает относительно большую площадь, поэтому для ОЗУ большого объема в качестве запоминающей ячейки применяют конденсатор. Заряд на этой Јмкости естественно с течением времени уменьшается, поэтому его необходимо подзаряжать с периодом приблизительно 10 мс. Этот период называется периодом регенерации. Подзарядка Јмкости производится при считывании ячейки памяти, поэтому для регенерации информации достаточно просто считать регенерируемую ячейку памяти.

Схема запоминающего элемента динамического ОЗУ и его конструкция приведена на рисунке 1.

Схема запоминающего элемента динамического ОЗУ и его конструкция.

При считывании заряда Јмкости необходимо учитывать, что Јмкость линии считывания много больше емкости запоминающей ячейки. Графики изменения напряжения на линии считывания при считывании информации с запоминающей ячейки без применения регенерации приведены на рисунке 2.

Рисунок 2. Графики изменения напряжения на линии считывания при считывании информации с запоминающей ячейки.

Первоначально на линии записи/считывания присутствует половина питания микросхемы. Для регенерации первоначального напряжения в схеме применяется RS триггер, включенный между двумя линиями записи/считывания. Схема такого включения приведена на рисунке 3.

Рисунок 3. Схема регенерирующего каскада.

Для уменьшения времени регенерации при считывании одной ячейки памяти в строке запоминающей матрицы регенерируется вся строка.

Особенностью динамических ОЗУ является мультиплексирование шины адреса. Адрес строки и адрес столбца передаются поочередно. Адрес строки синхронизируется стробирующим сигналом RAS# (Row Address strobe), а адрес столбца - CAS# (Column Adress Strobe). Мультиплексирование адресов позволяет уменьшить количество ножек микросхем ОЗУ. Изображение микросхемы динамического ОЗУ приведено на рисунке 4, а временные диаграммы обращения к динамическому ОЗУ на рисунке 5.

Рисунок 4. Изображение динамического ОЗУ на принципиальных схемах.

Рисунок 5. Временная диаграмма обращения к динамическому ОЗУ

Приведенные на рисунке временные диаграммы предполагают при обращении к ячейке памяти дважды выставлять на шине адреса код обращения к ячейке памяти ОЗУ. Обычно обращение ведется к данным, лежащим в соседних ячейках памяти, поэтому не обязательно при считывании каждый раз передавать адрес строки. Такой режим обращения к динамическому ОЗУ называется быстрый страничный режим доступа FPM (Fast Page Mode). Длина считываемого блока данных равна четырем словам. Для того, чтобы оценить время такого режима доступа к памяти время измеряют в тактах системной шины процессора. В обычном режиме доступа к памяти время доступа одинаково для всех слов. Поэтому цикл обращения к динамической памяти можно записать как 5-5-5-5.

При режиме быстрого страничного доступа цикл обращения к динамической памяти можно записать как 5-3-3-3, то есть общее время доступа к памяти сокращается почти в полтора раза. Временная диаграмма режима FPM приведена на рисунке 6.

Рисунок 6. Временная диаграмма обращения к динамическому ОЗУ в режиме FPM.

Еще одним способом увеличения быстродействия ОЗУ является применение EDO (Extended Data Out: ОЗУ с расширенным выходом данных). В EDO в усилителях регенератрах не сбрасываются по окончанию строба CAS#, поэтому считывание данных происходит быстрее. Для EDO ОЗУ цикл обращения к динамической памяти можно записать как 5-2-2-2.

Следующим шагом в развитии схем динамического ОЗУ было применение в составе ОЗУ счетчика столбцов. То есть при переходе адреса ячейки к следующему столбцу матрицы адрес столбца инкрементируется автоматически. Такое ОЗУ получило название BEDO (ОЗУ с пакетным доступом).

В синхронном ОЗУ (SDRAM) увеличение быстродействия получается за счет применения конвейерной обработки сигнала. Как известно при использовании конвейера можно разделить отдельные операции такие как выборка строк, выборка столбцов считывание ячеек памяти и производить эти операции одновременно. При этом пока на выход передаЈтся считанное ранее данное производится дешифрация столбца для текущей ячейки памяти и производится дешифрация строки для следующей ячейки памяти. Этот процесс иллюстрируется следующим рисунком:

Рисунок 7. Структурная схема конвейерной обработки данных.