Относительная магнитная проницаемость среды. Магнитные свойства вещества. Магнитная проницаемость. Ферромагнетики. Магнитные свойства веществ

Магнитный момент- это основная векторная величина, характеризующая магнитные свойства вещества. Поскольку источником магнетизма является замкнутый ток, то значение магнитного момента М определяется как произведение силы тока I на площадь, охватываемую контуром токаS:

М = I×S А×м 2 .

Магнитными моментами обладают электронные оболочки атомов и молекул. Электроны и другие элементарные частицы имеют спиновый магнитный момент, определяемый существованием собственного механического момента – спина. Спиновый магнитный момент электрона может ориентироваться во внешнем магнитном поле так, что возможны только две равные и противоположно направленные проекции момента на направление вектора напряженности магнитного поля, равные магнетону Бора – 9,274×10 -24 А×м 2 .

  1. Определите понятие «намагниченность» вещества.

Намагниченность – J – это суммарный магнитный момент единицы объема вещества:

  1. Определите понятие «магнитная восприимчивость».

Магнитная восприимчивость вещества, א v – отношение намагниченности вещества к напряженности магнитного поля, относящаяся к единице объема:

א v = , безразмерная величина.

Удельная магнитная восприимчивость, אотношение магнитной восприимчивости к плотности вещества,т.е. магнитная восприимчивость единицы массы, измеряемая в м 3 /кг.

  1. Определите понятие «магнитная проницаемость».

Магнитная проницаемость, μ – это физическая величина, характеризующая изменение магнитной индукции при воздействии магнитного поля. Для изотропных сред магнитная проницаемость равна отношению индукции в среде В к напряженности внешнего магнитного поля Н и к магнитной постоянной μ 0 :

Магнитная проницаемость – величина безразмерная. Её значение для конкретной среды на 1 больше магнитной восприимчивости той же среды:

μ = א v + 1, так какВ = μ 0 (Н+J).

  1. Дайте классификацию материалов по магнитным свойствам.

По магнитному строению и значению магнитной проницаемости (восприимчивости) материалы подразделяются на:

Диамагнетики μ< 1 (материал «сопротивляется» магнитному полю);

Парамагнетики μ > 1 (материал слабо воспринимает магнитное поле);

Ферромагнетики μ >> 1 (магнитное поле в материале усиливается);

Ферримагнетики μ >> 1 (магнитное поле в материале усиливается, но магнитная структура материала отличается от структуры ферромагнетиков);

Антиферромагнетики μ ≈ 1 (материал слабо реагирует на магнитное поле, хотя по магнитной структуре схож с ферримагнетиками).

  1. Опишите природу диамагнетизма.

Диамагнетизм – это свойство вещества намагничиваться навстречу направлению действующего на него внешнего магнитного поля (в соответствии с законом электромагнитной индукции и правилом Ленца). Диамагнетизм свойственен всем веществам, но в «чистом виде» он проявляется у диамагнетиков. Диамагнетики – вещества, молекулы которых не имеют собственных магнитных моментов (их суммарный магнитный момент равен нулю), поэтому других свойств, кроме диамагнетизма у них нет. Примеры диамагнетиков:


Водород, א= - 2×10 -9 м 3 /кг.

Вода, א= - 0,7×10 -9 м 3 /кг.

Алмаз, א= - 0,5×10 -9 м 3 /кг.

Графит, א= - 3×10 -9 м 3 /кг.

Медь, א= - 0,09×10 -9 м 3 /кг.

Цинк, א= - 0,17×10 -9 м 3 /кг.

Серебро, א= - 0,18×10 -9 м 3 /кг.

Золото, א= - 0,14×10 -9 м 3 /кг.

43. Опишите природу парамагнетизма.

Парамагнетизм – это свойство веществ, называемых парамагнетиками, которые, будучи помещены во внешнее магнитное поле, приобретают магнитный момент, совпадающий с направлением этого поля. Атомы и молекулы парамагнетиков в отличие от диамагнетиков имеют собственные магнитные моменты. При отсутствии поля ориентация этих моментов хаотична (из-за теплового движения) и суммарный магнитный момент вещества равен нулю. При наложении внешнего поля происходит частичная ориентация магнитных моментов частиц в направлении поля, и к напряженности внешнего поля Н добавляется намагниченность J: В = μ 0 (Н+J). Индукция в веществе усиливается. Примеры парамагнетиков:

Кислород, א= 108×10 -9 м 3 /кг.

Титан, א= 3×10 -9 м 3 /кг.

Алюминий, א= 0,6×10 -9 м 3 /кг.

Платина, א= 0,97×10 -9 м 3 /кг.

44.Опишите природу ферромагнетизма.

Ферромагнетизм – это магнитоупорядоченное состояние вещества, при котором все магнитные моменты атомов в определенном объеме вещества (домене) параллельны, что обусловливает самопроизвольную намагниченность домена. Появление магнитного порядка связано с обменным взаимодействием электронов, имеющим электростатическую природу (закон Кулона). В отсутствии внешнего магнитного поля ориентация магнитных моментов различных доменов может быть произвольной, и рассматриваемый объем вещества может иметь в целом слабую или нулевую намагниченность. При приложении магнитного поля магнитные моменты доменов ориентируются по полю тем больше, чем выше напряженность поля. При этом изменяется значение магнитной проницаемости ферромагнетика и усиливается индукция в веществе. Примеры ферромагнетиков:

Железо, никель, кобальт, гадолиний

и сплавы этих металлов между собой и другими металлами (Al, Au, Cr, Si и др.). μ ≈ 100…100000.

45. Опишите природу ферримагнетизма.

Ферримагнетизм – это магнитоупорядоченное состояние вещества, в котором магнитные моменты атомов или ионов образуют в определенном объеме вещества (домене) магнитные подрешетки атомов или ионов с суммарными магнитными моментами не равными друг другу и направленными антипараллельно. Ферримагнетизм можно рассматривать как наиболее общий случай магнитоупорядоченного состояния, а ферромагнетизм как случай с одной подрешеткой. В состав ферримагнетиков обязательно входят атомы ферромагнетиков. Примеры ферримагнетиков:

Fe 3 O 4 ; MgFe 2 O 4 ; CuFe 2 O 4 ; MnFe 2 O 4 ; NiFe 2 O 4 ; CoFe 2 O 4 …

Магнитная проницаемость ферримагнетиков имеет тот же порядок, что и у ферромагнетиков: μ ≈ 100…100000.

46.Опишите природу антиферромагнетизма.

Антиферромагнетизм – это магнитоупорядоченное состояние вещества, характеризующееся тем, что магнитные моменты соседних частиц вещества ориентированы антипараллельно, и в отсутствии внешнего магнитного поля суммарная намагниченность вещества равна нулю. Антиферромагнетик в отношении магнитного строения можно рассматривать как частный случай ферримагнетика, в котором магнитные моменты подрешеток равны по модулю и антипараллельны. Магнитная проницаемость антиферромагнетиков близка к 1. Примеры антиферромагнетиков:

Cr 2 O 3 ; марганец; FeSi; Fe 2 O 3 ; NiO……… μ ≈ 1.

47.Какое значение магнитной проницаемости у материалов в сверхпроводящем состоянии?

Сверхпроводники ниже температуры сверхперехода являются идеальными диамагнетиками:

א= - 1; μ = 0.

Многочисленные опыты свидетельствуют о том, что все вещества, помещенные в магнитное поле, намагничиваются и создают собственное магнитное поле, действие которого складывается с действием внешнего магнитного поля:

$$\boldsymbol{\vec{B}={\vec{B}}_{0}+{\vec{B}}_{1}}$$

где $\boldsymbol{\vec{B}}$ - магнитная индукция поля в веществе; $\boldsymbol{{\vec{B}}_{0}}$ - магнитная индукция поля в вакууме, $\boldsymbol{{\vec{B}}_{1}}$ - магнитная индукция поля, возникшего благодаря намагничиванию вещества. При этом вещество может либо усиливать, либо ослаблять магнитное поле. Влияние вещества на внешнее магнитное поле характеризуется величиной μ , которая называется магнитной проницаемостью вещества

$$ \boldsymbol{\mu =\frac{B}{{B}_{0}}}$$

  • Магнитная проницаемость - это физическая скалярная величина, показывающая, во сколько раз индукция магнитного поля в данном веществе отличается от индукции магнитного поля в вакууме.

Все вещества состоят из молекул, молекулы - из атомов. Электронные оболочки атомов можно условно рассматривать состоящими из круговых электрических токов, образованных движущимися электронами. Круговые электрические токи в атомах должны создавать собственные магнитные поля. На электрические токи должно оказывать действие внешнее магнитное поле, в результате чего можно ожидать либо усиления магнитного поля при сонаправленности атомных магнитных полей с внешним магнитным полем, либо их ослабления при их противоположной направленности.
Гипотеза о существовании магнитных полей в атомах и возможности изменения магнитного поля в веществе полностью соответствует действительности. Все вещества по действию на них внешнего магнитного поля можно разделить на три основные группы: диамагнетики, парамагнетики и ферромагнетики.

Диамагнетиками называются вещества, в которых внешнее магнитное поле ослабляется. Это значит, что магнитные поля атомов таких веществ во внешнем магнитном поле направлены противоположно внешнему магнитному полю (µ < 1). Изменение магнитного поля даже в самых сильных диамагнетиках составляет лишь сотые доли процента. Например, висмут обладает магнитной проницаемостью µ = 0,999826.

Для понимания природы диамагнетизма рассмотрим движение электрона, который влетает со скоростью v в однородное магнитное поле перпендикулярно вектору В магнитного поля.

Под действием силы Лоренца электрон станет двигаться по окружности, направление его вращения определяется направлением вектора силы Лоренца. Возникший круговой ток создаёт своё магнитное поле В" . Это магнитное поле В" направлено противоположно магнитному полю В . Следовательно, любое вещество, содержащее свободно движущиеся заряженные частицы, должно обладать диамагнитными свойствами.
Хотя в атомах вещества электроны не свободны, изменение их движения внутри атомов под действием внешнего магнитного поля оказывается эквивалентным круговому движению свободных электронов. Поэтому любое вещество в магнитном поле обязательно обладает диамагнитными свойствами.
Однако диамагнитные эффекты очень слабы и обнаруживаются только у веществ, атомы или молекулы которых не обладают собственным магнитным полем. Примерами диамагнетиков являются свинец, цинк, висмут (μ = 0,9998).

Впервые объяснение причин, вследствие которых тела обладают магнитными свойствами, дал Анри Ампер (1820 г.). Согласно его гипотезе, внутри молекул и атомов циркулируют элементарные электрические токи, которые и определяют магнитные свойства любого вещества.

Рассмотрим причины магнетизма атомов более подробно:

Возьмем некоторое твердое вещество. Его намагниченность связана с магнитными свойствами частиц (молекул и атомов), из которых оно состоит. Рассмотрим, какие контуры с током возможны на микроуровне. Магнетизм атомов обусловлен двумя основными причинами:

1) движением электронов вокруг ядра по замкнутым орбитам (орбитальный магнитный момент ) (рис. 1);

Рис. 2

2) собственным вращением (спином) электронов (спиновой магнитный момент ) (рис. 2).

Для любознательных . Магнитный момент контура равен произведению силы тока в контуре на площадь, охватываемую контуром. Его направление совпадает с направлением вектора индукции магнитного поля в середине контура с током.

Так как в атоме плоскости орбит различных электронов не совпадают, то вектора индукций магнитных полей , созданные ими (орбитальные и спиновые магнитные моменты), направлены под разными углами друг к другу. Результирующий вектор индукции многоэлектронного атома равен векторной сумме векторов индукций полей, создаваемых отдельными электронами. Не скомпенсированными полями обладают атомы с частично заполненными электронными оболочками. В атомах с заполненными электронными оболочками результирующий вектор индукции равен 0.

Во всех случаях изменение магнитного поля обусловлено появлением токов намагниченности (наблюдается явление электромагнитной индукции). Иными словами принцип суперпозиции для магнитного поля остается справедливым: поле внутри магнетика является суперпозицией внешнего поля $\boldsymbol{{\vec{B}}_{0}}$ и поля $\boldsymbol{\vec{B"}}$ токов намагничивания i" , которые возникают под действием внешнего поля. Если поле токов намагниченности направлено так же, как и внешнее поле, то индукция суммарного поля будет больше внешнего поля (Рис. 3, а) – в этом случае мы говорим, что вещество усиливает поле; если же поле токов намагниченности направлено противоположно внешнему полю, то суммарное поле будет меньше внешнего поля (Рис. 3, б) – именно в этом смысле мы говорим, что вещество ослабляет магнитное поле.

Рис. 3

В диамагнетиках молекулы не обладают собственным магнитным полем. Под действием внешнего магнитного поля в атомах и молекулах поле токов намагниченности направлено противоположно внешнему полю, поэтому модуль вектора магнитной индукции $ \boldsymbol{\vec{B}}$ результирующего поля будет меньше модуль вектора магнитной индукции $ \boldsymbol{{\vec{B}}_{0}} $ внешнего поля.

Вещества, в которых внешнее магнитное поле усиливается в результате сложения с магнитными полями электронных оболочек атомов вещества из-за ориентации атомных магнитных полей в направлении внешнего магнитного поля, называются парамагнетиками (µ > 1).

Парамагнетики очень слабо усиливают внешнее магнитное поле. Магнитная проницаемость парамагнетиков отличается от единицы лишь на доли процента. Например, магнитная проницаемость платины равна 1,00036. Из – за очень малых значений магнитной проницаемости парамагнетиков и диамагнетиков их влияние на внешнее поле или воздействие внешнего поля на парамагнитные или диамагнитные тела очень трудно обнаружить. Поэтому в обычной повседневной практике, в технике парамагнитные и диамагнитные вещества рассматриваются как немагнитные, то есть вещества, не изменяющие магнитное поле и не испытывающие действия со стороны магнитного поля. Примерами парамагнетиков являются натрий, кислород, алюминий (μ = 1,00023).

В парамагнетиках молекулы обладают собственным магнитным полем. В отсутствии внешнего магнитного поля из-за теплового движения вектора индукций магнитных полей атомов и молекул ориентированы хаотически, поэтому их средняя намагниченность равна нулю (рис. 4, а). При наложении внешнего магнитного поля на атомы и молекулы начинает действовать момент сил, стремящийся повернуть их так, чтобы их поля были ориентированы параллельно внешнему полю. Ориентация молекул парамагнетика приводит к тому, что вещество намагничивается (рис. 4, б).

Рис. 4

Полной ориентации молекул в магнитном поле препятствует их тепловое движение, поэтому магнитная проницаемость парамагнетиков зависит от температуры. Очевидно, что с ростом температуры магнитная проницаемость парамагнетиков уменьшается.

Ферромагнетики

Вещества, значительно усиливающие внешнее магнитное поле, называются ферромагнетиками (никель, железо, кобальт и др.). Примерами ферромагнетиков являются кобальт, никель, железо (μ достигает значения 8·10 3).

Само название этого класса магнитных материалов происходит от латинского имени железа - Ferrum. Главная особенность этих веществ заключается в способности сохранять намагниченность в отсутствии внешнего магнитного поля, все постоянные магниты относятся к классу ферромагнетикам. Кроме железа ферромагнитными свойствами обладают его «соседи» по таблице Менделеева - кобальт и никель. Ферромагнетики находят широкое практическое применение в науке и технике, поэтому разработано значительное число сплавов, обладающих различными ферромагнитными свойствами.

Все приведенные примеры ферромагнетиков относятся к металлам переходной группы, электронная оболочка которых содержит несколько не спаренных электронов, что и приводит к тому, что эти атомы обладают значительным собственным магнитным полем. В кристаллическом состоянии благодаря взаимодействию между атомами в кристаллах возникают области самопроизвольной (спонтанной) намагниченности - домены. Размеры этих доменов составляют десятые и сотые доли миллиметра (10 -4 − 10 -5 м), что значительно превышает размеры отдельного атома (10 -9 м). В пределах одного домена магнитные поля атомов ориентированы строго параллельно, ориентация магнитных полей других доменов при отсутствии внешнего магнитного поля меняется произвольно (рис. 5).

Рис. 5

Таким образом, и в не намагниченном состоянии внутри ферромагнетика существуют сильные магнитные поля, ориентация которых при переходе от одного домена к другому меняется случайным хаотическим образом. Если размеры тела значительно превышают размеры отдельных доменов, то среднее магнитное поле, создаваемое доменами этого тела, практически отсутствует.

Если поместить ферромагнетик во внешнее магнитное поле B 0 , то магнитные моменты доменов начинают перестраиваться. Однако механического пространственного вращения участков вещества не происходит. Процесс перемагничивания связан с изменением движения электронов, но не с изменением положения атомов в узлах кристаллической решетки. Домены, имеющие наиболее выгодную ориентацию относительно направления поля, увеличивают свои размеры за счет соседних «неправильно ориентированных» доменов, поглощая их. При этом поле в веществе возрастает весьма существенно.

Свойства ферромагнетиков

1) ферромагнитные свойства вещества проявляются только тогда, когда соответствующее вещество находится в кристаллическом состоянии ;

2) магнитные свойства ферромагнетиков сильно зависят от температуры, так как ориентации магнитных полей доменов препятствует тепловое движение. Для каждого ферромагнетика существует определенная температура, при котором доменная структура полностью разрушается, и ферромагнетик превращается в парамагнетик. Это значение температуры называется точкой Кюри . Так для чистого железа значение температуры Кюри приблизительно равно 900°C;

3) ферромагнетики намагничиваются до насыщения в слабых магнитных полях. На рисунке 6 показано, как изменяется модуль индукции магнитного поля B в стали с изменением внешнего поля B 0 :

Рис. 6

4) магнитная проницаемость ферромагнетика зависит от внешнего магнитного поля (рис. 7).

Рис. 7

Это объясняется тем, что вначале с увеличением B 0 магнитная индукция B растет сильнее, а, следовательно, μ будет увеличиваться. Затем при значении магнитной индукции B" 0 наступает насыщение (μ в этот момент максимальна) и при дальнейшем увеличении B 0 магнитная индукция B 1 в веществе перестает изменяться, а магнитная проницаемость уменьшается (стремится к 1):

$$\boldsymbol{\mu = \frac B{B_0} = \frac {B_0 + B_1}{B_0} = 1 + \frac {B_1}{B_0};} $$

5) у ферромагнетиков наблюдается остаточная намагниченность. Если, например, ферромагнитный стержень поместить в соленоид, по которому проходит ток, и намагнитить до насыщения (точка А ) (рис. 8), а затем уменьшать ток в соленоиде, а вместе с ним и B 0 , то можно заметить, что индукция поля в стержне в процессе его размагничивания остается все время большей, чем в процессе намагничивания. Когда B 0 = 0 (ток в соленоиде выключен), индукция будет равна B r (остаточная индукция). Стержень можно вынуть из соленоида и использовать как постоянный магнит. Чтобы окончательно размагнитить стержень, нужно пропустить по соленоиду ток противоположного направления, т.е. приложить внешнее магнитное поле с противоположным направлением вектора индукции. Увеличивая теперь по модулю индукцию этого поля до B oc , размагничивают стержень (B = 0).

  • Модуль B oc индукции магнитного поля, размагничивающего намагниченный ферромагнетик, называют коэрцитивной силой .

Рис. 8

При дальнейшем увеличении B 0 можно намагнитить стержень до насыщения (точка А" ).

Уменьшая теперь B 0 до нуля, получают опять постоянный магнит, но с индукцией B r (противоположного направления). Чтобы вновь размагнитить стержень, нужно снова включить в соленоид ток первоначального направления, и стержень размагнитится, когда индукция B 0 станет равной B oc . Продолжая увеличивать я B 0 , снова намагничивают стержень до насыщения (точка А ).

Таким образом, при намагничивании и размагничивании ферромагнетика индукция B отстает от B 0. Это отставание называется явлением гистерезиса . Изображенная на рисунке 8 кривая называется петлей гистерезиса .

Гистерезис (греч. ὑστέρησις - «отстающий») - свойство систем, которые не сразу следуют за приложенными силам.

Вид кривой намагничивания (петли гистерезиса) существенно различается для различных ферромагнитных материалов, которые нашли очень широкое применение в научных и технических приложениях. Некоторые магнитные материалы имеют широкую петлю с высокими значениями остаточной намагниченности и коэрцитивной силы, они называются магнитно-жесткими и используются для изготовления постоянных магнитов. Для других ферромагнитных сплавов характерны малые значения коэрцитивной силы, такие материалы легко намагничиваются и перемагничиваются даже в слабых полях. Такие материалы называются магнитно-мягкими и используются в различных электротехнических приборах - реле, трансформаторах, магнитопроводах и др.

Литература

  1. Аксенович Л. А. Физика в средней школе: Теория. Задания. Тесты: Учеб. пособие для учреждений, обеспечивающих получение общ. сред, образования / Л. А. Аксенович, Н.Н.Ракина, К. С. Фарино; Под ред. К. С. Фарино. - Мн.: Адукацыя i выхаванне, 2004. - C.330- 335.
  2. Жилко, В. В. Физика: учеб. пособие для 11-го кл. общеобразоват. шк. с рус. яз. обучения / В. В. Жилко, А.В. Лавриненко, Л. Г. Маркович. - Мн.: Нар. асвета, 2002. - С. 291-297.
  3. Слободянюк А.И. Физика 10. §13 Взаимодействие магнитного поля с веществом

Примечания

  1. Рассматриваем направление вектора индукции магнитного поля только в середине контура.

Из многолетней технической практики нам известно, что индуктивность катушки сильно зависит от характеристик среды, где эта катушка находится. Если в катушку из медной проволоки, обладающую известной индуктивностью L0, добавить ферромагнитный сердечник, то при прочих прежних обстоятельствах токи самоиндукции (экстратоки замыкания и размыкания) в данной катушке многократно увеличатся, эксперимент это подтвердит, что и будет означать возросшую в несколько раз , которая теперь станет равна L.

Экспериментальное наблюдение

Допустим, что окружающая среда, вещество, заполняющее пространство внутри и вокруг описанной катушки, однородно, и порождаемое текущим по ее проводу током, локализовано только в этой обозначенной области, не выходя за ее границы.

Если катушка имеет тороидальную форму, форму замкнутого кольца, то данная среда вместе с полем окажется сосредоточена только внутри объема катушки, ибо снаружи тороида практически полностью магнитное поле отсутствует. Справедливо данное положение и для длинной катушки - соленоида, у которого все магнитные линии так же сосредоточены внутри - по оси.


Для примера допустим, что индуктивность некоторого контура или катушки без сердечника в вакууме равна L0. Тогда для такой же катушки, но уже в однородном веществе, которое заполняет пространство, где присутствуют магнитные силовые линии данной катушки, индуктивность пусть будет равна L. В этом случае получится, что отношение L/L0 – это есть ни что иное, как относительная магнитная проницаемость названного вещества (иногда говорят просто «магнитная проницаемость»).

Становится очевидно: магнитная проницаемость - это величина, которая характеризует магнитные свойства данного вещества. Она зачастую зависит от состояния вещества (и от условий окружающей среды, таких как например температура и давление) и от его рода.

Понимание термина


Введение термина «магнитная проницаемость», применительно к веществу, размещенному в поле магнитном, аналогично введению термина «диэлектрическая проницаемость» для вещества находящегося в поле электрическом.

Значение магнитной проницаемости, определяемое по приведенной выше формуле L/L0, может быть выражена и как отношение абсолютных магнитных проницаемостей данного вещества и абсолютной пустоты (вакуума).

Легко заметить: магнитная проницаемость относительная (она же - магнитная проницаемость) - это величина безразмерная. А вот абсолютная магнитная проницаемость - имеет размерность Гн/м, ту же самую, что у магнитной проницаемости (абсолютной!) вакуума (она же - магнитная постоянная).

Фактически видим, что среда (магнетик) влияет на индуктивность контура, и это однозначно свидетельствует о том, что изменение среды приводит к изменению магнитного потока Ф, пронизывающего контур, а значит и к изменению индукции В, применительно к любой точке магнитного поля.

Физический смысл данного наблюдения заключается в том, что при одном и том же токе катушки (при одной и той же магнитной напряженности H), индукция ее магнитного поля окажется в определенное количество раз больше (в некоторых случаях - меньше) в веществе с магнитной проницаемостью мю, чем в полном вакууме.

Это происходит потому, что , и сама начинает обладать магнитным полем. Вещества, способные таким образом намагничиваться, называют магнетиками.

Единица измерения абсолютной магнитной проницаемости - 1 Гн/м (генри на метр или ньютон на ампер в квадрате), то есть это магнитная проницаемость такой среды, где при напряженности Н магнитного поля, равной 1 А/м - возникает магнитная индукция величиной 1 Тл.

Физическая картина явления

Из вышеизложенного становится ясно, что различные вещества (магнетики) под действием магнитного поля контура с током намагничиваются, и в результате получается магнитное поле, являющееся суммой магнитных полей - магнитного поля от намагниченной среды плюс от контура с током, потому оно отличается по величине от поля только контура с током без среды. Причина намагничивания магнетиков кроется в существовании мельчайших токов внутри каждого их атома.

По значению магнитной проницаемости, вещества классифицируются на диамагнетики (меньше единицы - намагничиваются против приложенного поля), парамагнетики (больше единицы - намагничиваются по направлению приложенного поля) и ферромагнетики (сильно больше единицы - намагничиваются, и обладают намагниченностью после отключения приложенного магнитного поля).

Ферромагнетикам свойственен , поэтому понятие «магнитная проницаемость» в чистом виде к ферромагнетикам не применимо, но в некотором диапазоне намагничивания, в некотором приближении, можно выделить линейный участок кривой намагничивания, для которого получится оценить магнитную проницаемость.

У сверхпроводников магнитная проницаемость - 0 (поскольку магнитное поле полностью вытесняется из их объема), а абсолютная магнитная проницаемость воздуха почти равна мю вакуума (читай магнитной постоянной). У воздуха мю относительная чуть-чуть больше 1.

Называемой магнитной проницаемостью. Абсолютная магнитная проницаемость среды - это отношение B к H. Согласно Международной системе единиц она измеряется в единицах, называемых 1 генри на метр.

Числовое значение ее выражается отношением ее величины к величине магнитной проницаемости вакуума и обозначается µ. Данная величина именуется относительной магнитной проницаемостью (или просто магнитной проницаемостью) среды. Как величина относительная, она не имеет единицы измерения.

Следовательно, относительная магнитная проницаемость µ - величина, показывающая, в какое число раз индукция поля данной среды меньше (или больше) индукции вакуумного магнитного поля.

При воздействии на вещество внешним магнитным полем оно становится намагниченным. Каким образом это происходит? По гипотезе Ампера, в каждом веществе постоянно циркулируют микроскопические электротоки, вызванные движением электронов по своим орбитам и наличием у них собственного В обычных условиях это движение неупорядочено, и поля «гасят» (компенсируют) друг друга. При помещении тела во внешнее поле происходит упорядочивание токов, и тело становится намагниченным (т. е. обладающим своим полем).

Магнитная проницаемость всех веществ различна. Исходя из ее величины, вещества подлежат делению на три большие группы.

У диамагнетиков величина магнитной проницаемости µ - чуть меньше единицы. Например, у висмута µ = 0,9998. К диамагнетикам относятся цинк, свинец, кварц, медь, стекло, водород, бензол, вода.

Магнитная проницаемость парамагнетиков чуть-чуть побольше единицы (у алюминия µ = 1,000023). Примеры парамагнетиков - никель, кислород, вольфрам, эбонит, платина, азот, воздух.

Наконец, к третьей группе принадлежит целый ряд веществ (в основном это металлы и сплавы), чья магнитная проницаемость значительно (на несколько порядков) превышает единицу. Эти вещества - ферромагнетики. В основном сюда относятся никель, железо, кобальт и их сплавы. Для стали µ = 8∙10^3, для сплава никеля с железом µ=2.5∙10^5. Ферромагнетики обладают свойствами, отличающими их от других веществ. Во-первых, они обладают остаточным магнетизмом. Во-вторых, их магнитная проницаемость находится в зависимости от величины индукции внешнего поля. В-третьих, для каждого из них существует определенный порог температуры, называемый точкой Кюри , при котором он теряет ферромагнитные свойства и становится парамагнетиком. Для никеля точка Кюри - 360°C, для железа - 770°C.

Свойства ферромагнетиков определяет не только магнитная проницаемость, но и величина I, именуемая намагниченностью данного вещества. Это сложная нелинейная функция магнитной индукции, рост намагниченности описывается линией, именуемой кривой намагниченности . При этом, достигнув определенной точки, намагниченность практически перестает расти (наступает магнитное насыщение ). Отставание величины намагниченности ферромагнетика от растущей величины индукции внешнего поля называется магнитным гистерезисом . При этом существует зависимость магнитных характеристик ферромагнетика не только от его состояния в настоящий момент, но и от его предшествующей намагниченности. Графическое изображение кривой данной зависимости именуется петлей гистерезиса .

Благодаря своим свойствам, ферромагнетики повсеместно применяются в технике. Их используют в роторах генераторов и электродвигателей, при изготовлении сердечников трансформаторов и в производстве деталей электронно-вычислительных машин. ферромагнетиков используются в магнитофонах, телефонах, на магнитных лентах и других носителях.

Диэлектрическая проницаемость веществ

Вещество

Вещество

Газы и водяной пар

Жидкости

Азот 1,0058 Глицерин 43
Водород 1,00026 Кислород жидкий (при t = -192,4 o C) 1,5
Воздух 1,00057 Масло трансформаторное 2,2
Вакуум 1,00000 Спирт 26
Водянной пар (при t=100 o C) 1,006 Эфир 4,3
Гелий 1,00007

Твердые тела

Кислород 1,00055 Алмаз 5,7
Углекислый газ 1,00099 Бумага парафинированная 2,2

Жидкости

Дерево сухое 2,2-3,7
Азот жидкий (при t = -198,4 o C) 1,4 Лед (при t = -10 o C) 70
Бензин 1,9-2,0 Парафин 1,9-2,2
Вода 81 Резина 3,0-6,0
Водород (при t= - 252,9 o C) 1,2 Слюда 5,7-7,2
Гелий жидкий (при t = - 269 o C) 1,05 Стекло 6,0-10,0
Титанат бария 1200
Фарфор 4,4-6,8
Янтарь 2,8

Примечание. Электрическая постоянная ԑ o (диэлектрическая проницаемость вакуума) равная: ԑ o = 1\4πс 2 * 10 7 Ф/м ≈ 8,85 * 10 -12 Ф/м

Магнитная проницаемость вещества

Примечание. Магнитная постоянная μ o (магнитная проницаемость вакуума) равна: μ o = 4π * 10 -7 Гн/м ≈ 1,257 * 10 -6 Гн/м

М агнитная проницаемость ферромагнетиков

В таблице приведены значения магнитной проницаемости для некоторых ферромагнетиков (веществ с μ > 1). Магнитная приницаемость для ферромагнетиков (железо, чугун, сталь, никель и др.) не постоянная. В таблице указаны максимальные значения.

1 Пермаллой-68 - сплав из 68% никеля и 325 железа; этот сплав применяют для изготовления сердечников трансформаторов.

Температура Кюри

Удельное электрическое сопротивление материалов

Сплавы высокого сопротивления

Название сплава

Удельное электрическое сопротивление мкОМ м

Состав сплава, %

Марганец

Другие элементы

Константан 0,50 54 45 1 -
Копель 0,47 56,5 43 0,05 -
Манганин 0,43 > 85 2-4 12 -
Нейзильбер 0,3 65 15 - 20 Zn
Никелин 0,4 68,5 30 1,5 -
Нихром 1,1 - > 60 < 4 30 < Cr ост. Fe
Фехраль 1,3 - - - 12-15 Cr 3-4 Al 80 < Fe

Температурные коэффициенты электрического сопротивления проводников

Проводник

Проводник

Алюминий Никель
Вольфрам Нихром
Железо Олово
Золото Платина
Константан Ртуть
Латунь Свинец
Магний Серебро
Манганин Сталь
Медь Фехраль
Нейзильбер Цинк
Никелин Чугун

Сверхпроводимость проводников

    Примечания.
  1. Сверхпроводимость обнаружена у более чем 25 металлических элементов и у большого числа сплавов и соединений.
  2. Сверхпроводником с наиболее высокой температурой перехода в сверхпроводящее состояние -23,2 К (-250,0 o C) - до недавного времени являлся германид ниобия (Nb 3 Ge). В конце 1986 г. был получен сверхпроводник с температурой перехода ≈ 30 К (≈ -243 o С). Сообщается о синтезе новых высокотемпературных сверхпроводников: керамик (изготовливается путем спекания оксидов бария, меди и лантана) с температурой перехода ≈ 90-120 К.

Удельное электрическое сопротивление некоторых полупроводников и диэлектриков

Вещество СтеклоТемпература, o С Удельное сопротивление
Ом м Ом мм2/м

Полупроводники

Антимонид индия 17 5,8 х 10 -5 58
Бор 27 1,7 х 10 4 1,7 х 10 10
Германий 27 0,47 4,7 х 10 5
Кремний 27 2,3 х 10 3 2,3 х 10 9
Cеленид свинца (II) (PbSe) 20 9,1 х 10 -6 9,1
Сульфид свинца (II) (PbS) 20 1,7 х 10 -5 0,17

Диэлектрики

Вода дистиллированная 20 10 3 -10 4 10 9 -10 10
Воздух 0 10 15 -10 18 10 21 -10 24
Воск пчелиный 20 10 13 10 19
Древесина сухая 20 10 9 -10 10 10 15 -10 16
Кварц 230 10 9 10 15
Масло трансформаторное 20 10 11 -10 13 10 16 -10 19
Парафин 20 10 14 10 20
Резина 20 10 11 -10 12 10 17 -10 18
Слюда 20 10 11 -10 15 10 17 -10 21
Стекло 20 10 9 -10 13 10 15 -10 19

Электрическое свойства пластмасс

Название пластмассы Диэлектрическая проницаемость
Гетинакс 4,5-8,0 10 9 -10 12
Капрон 3,6-5,0 10 10 -10 11
Лавсан 3,0-3,5 10 14 -10 16
Органическое стекло 3,5-3,9 10 11 -10 13
Пенопласт 1,0-1,3 ≈ 10 11
Полистирол 2,4-2,6 10 13 -10 15
Полихлорвинил 3,2-4,0 10 10 -10 12
Полиэтилен 2,2-2,4 ≈ 10 15
Стеклотекстолит 4,0-5,5 10 11 -10 12
Текстолит 6,0-8,0 10 7 -10 19
Целлулоид 4,1 10 9
Эбонит 2,7-3,5 10 12 -10 14

Удельное электрическое сопротивление электролитов (при t=18 o С и 10-процентной концентрации раствора)

Примчание. Удельноое сопротивление электролитов зависит от температуры и концентрации, т.е. от отношения массы растворенной кислоты, щелочи или соли к массе растворяющей воды. При указанной концентрации растворов увеличение температуры на 1 o С уменьшает удельное сопротивление раствора, взятого при 18 o С, на 0,012 гидроксида натрия, на 0,022 - для медного купороса, на 0,021 - для хлорида натрия, на 0,013 -для серной кислоты и на 0,003 - для 100 - процентной серной кислоты.

Удельное электрическое сопртивление жидкостей

Жидкость

Удельное электрическое сопротивление, Ом м

Жидкость

Удельное электрическое сопротивление, Ом м

Ацетон 8,3 х 10 4 Расплавленные соли:
Вода дистилированна 10 3 - 10 4 гидроксид калия (КОН; при t = 450 o C) 3,6 х 10 -3
Вода морская 0,3 гидроксид натрия (NaOH; при t = 320 o C) 4,8 х 10 -3
Вода речная 10-100 хлорид натрия (NaCI; при t = 900 o C) 2,6 х 10 -3
Воздух жидкий (при t = -196 o C) 10 16 сода (Na 2 CO 3 x10H 2 O; при t = 900 o C) 4,5 х 10 -3
Глицерин 1,6 х 10 5 Спирт 1,5 х 10 5
Керосин 10 10
Нафталин расплавленный (при (при t = 82 o C) 2,5 х 10 7