Площадь боковой и полной поверхности конуса. Как найти образующую конуса




































Назад Вперёд

Внимание! Предварительный просмотр слайдов используется исключительно в ознакомительных целях и может не давать представления о всех возможностях презентации. Если вас заинтересовала данная работа, пожалуйста, загрузите полную версию.

Тип урока: урок изучения нового материала с применением элементов проблемно-развивающего метода обучения.

Цели урока:

  • познавательные:
    • ознакомление с новым математическим понятием;
    • формирование новых ЗУН;
    • формирование практических навыков решения задач.
  • развивающие:
    • развитие самостоятельного мышления учащихся;
    • развитие навыков правильной речи школьников.
  • воспитательные:
    • воспитание навыков работы в коллективе.

Оборудование урока: магнитная доска, компьютер, экран, мультимедийный проектор, модель конуса, презентация к уроку, раздаточный материал.

Задачи урока (для учащихся):

  • познакомиться с новым геометрическим понятием - конус;
  • вывести формулу для вычисления площади поверхности конуса;
  • научиться применять полученные знания при решении практических задач.

Ход урока

I этап. Организационный.

Сдача тетрадей с домашней проверочной работой по пройденной теме.

Учащимся предлагается узнать тему предстоящего урока, разгадав ребус (слайд 1) :

Рисунок 1.

Объявление учащимся темы и задач урока (слайд 2) .

II этап. Объяснение нового материала.

1) Лекция учителя.

На доске – таблица с изображением конуса. Новый материал объясняется в сопровождении программного материала «Стереометрия». На экране появляется трёхмерное изображение конуса. Учитель даёт определение конуса, рассказывает о его элементах.(слайд 3) . Говорится о том, что конус – это тело, образованное при вращении прямоугольного треугольника относительно катета. (слайды 4, 5). Появляется изображение развёртки боковой поверхности конуса. (слайд 6)

2) Практическая работа.

Актуализация опорных знаний: повторить формулы для вычисления площади круга, площади сектора, длины окружности, длины дуги окружности. (слайды 7–10)

Класс делится на группы. Каждая группа получает вырезанную из бумаги развёртку боковой поверхности конуса (сектор круга с присвоенным номером). Учащиеся выполняют необходимые измерения и вычисляют площадь полученного сектора. Инструкции по выполнению работы, вопросы – постановки проблем – появляются на экране (слайды 11–14) . Результаты вычислений представитель каждой группы записывает в заготовленную на доске таблицу. Участники каждой группы склеивают модель конуса из имеющейся у них развёртки. (слайд 15)

3) Постановка и решение проблемы.

Как вычислить площадь боковой поверхности конуса, если известны только радиус основания и длина образующей конуса? (слайд 16)

Каждая группа производит необходимые измерения и пытается вывести формулу вычисления искомой площади с помощью имеющихся данных. При выполнении этой работы школьники должны заметить, что длина окружности основания конуса равна длине дуги сектора – развёртки боковой поверхности этого конуса. (слайды 17–21) Используя необходимые формулы, выводится искомая формула. Рассуждения учащихся должны выглядеть примерно таким образом:

Радиус сектора – развёртки равен l, градусная мера дуги – φ. Площадь сектора вычисляется по формуле длина дуги, ограничивающей этот сектор, равна Радиус основания конуса R. Длина окружности, лежащей в основании конуса, равна С = 2πR. Заметим, что Так как площадь боковой поверхности конуса равна площади развёртки его боковой поверхности, то

Итак, площадь боковой поверхности конуса вычисляется по формуле S БПК = πRl.

После вычисления площади боковой поверхности модели конуса по выведенной самостоятельно формуле представитель каждой группы записывает результат вычислений в таблицу на доске в соответствии с номерами моделей. Результаты вычислений в каждой строке должны быть равны. По этому признаку учитель определяет правильность выводов каждой группы. Таблица результатов должна выглядеть таким образом:

№ модели

I задание

II задание

(125/3)π ~ 41,67 π

(425/9)π ~ 47,22 π

(539/9)π ~ 59,89 π

Параметры моделей:

  1. l=12 см, φ =120 °
  2. l=10 см, φ =150 °
  3. l=15 см, φ =120 °
  4. l=10 см, φ =170 °
  5. l=14 см, φ =110 °

Приближённость вычислений связана с погрешностями измерений.

После проверки результатов вывод формул площадей боковой и полной поверхностей конуса появляется на экране (слайды 22–26) , ученики ведут записи в тетрадях.

III этап. Закрепление изученного материала.

1) Учащимся предлагаются задачи для устного решения на готовых чертежах.

Найти площади полных поверхностей конусов, изображённых на рисунках (слайды 27–32) .

2) Вопрос: равны ли площади поверхностей конусов, образованных вращением одного прямоугольного треугольника относительно разных катетов? Учащиеся выдвигают гипотезу и проверяют её. Проверка гипотезы осуществляется путём решения задач и записывается учеником на доске.

Дано: Δ АВС, ∠С=90°, АВ=с, АС=b, ВС=а;

ВАА", АВВ" – тела вращения.

Найти: S ППК 1 , S ППК 2 .

Рисунок 5. (слайд 33)

Решение:

1) R=ВС= а ; S ППК 1 = S БПК 1 + S осн 1 = π а с+π а 2 = π а (а + с).

2) R=АС= b ; S ППК 2 = S БПК 2 + S осн 2 = π b с+π b 2 = π b (b + с).

Если S ППК 1 = S ППК 2 , то а 2 +ас = b 2 + bc, a 2 - b 2 + ac - bc = 0, (a-b)(a+b+c) = 0. Т.к. a, b, c – положительные числа (длины сторон треугольника), торавенство верно только в случае, если a = b.

Вывод: Площади поверхностей двух конусов равны только в случае равенства катетов треугольника.(слайд 34)

3) Решение задачи из учебника: № 565.

IV этап. Подведение итогов урока.

Домашнее задание: п.55, 56; № 548, № 561. (слайд 35)

Объявление поставленных оценок.

Выводы по ходу урока, повторение основных сведений, полученных на уроке.

Литература (слайд 36)

  1. Геометрия 10–11 классы – Атанасян, В. Ф. Бутузов, С. Б. Кадомцев и др., М., «Просвещение», 2008.
  2. «Математические ребусы и шарады» – Н.В. Удальцова, библиотечка «Первого сентября», серия «МАТЕМАТИКА», выпуск 35, М., Чистые пруды, 2010.

Мы знаем, что такое конус, попробуем найти площадь его поверхности. Зачем нужно решать такую задачу? Например, нужно понять, сколько теста пойдет на изготовление вафельного рожка? Или сколько кирпичей понадобится, чтобы сложить кирпичную крышу замка?

Измерить площадь боковой поверхности конуса просто так не получится. Но представим себе все тот же рожок, обмотанный тканью. Чтобы найти площадь куска ткани, нужно разрезать и разложить ее на столе. Получится плоская фигура, ее площадь мы сможем найти.

Рис. 1. Разрез конуса по образующей

Сделаем так же с конусом. «Разрежем» его боковую поверхность вдоль любой образующей, например, (см. рис. 1).

Теперь «размотаем» боковую поверхность на плоскость. Получаем сектор. Центр этого сектора - вершина конуса, радиус сектора равен образующей конуса, а длина его дуги совпадает с длиной окружности основания конуса. Такой сектор называется разверткой боковой поверхности конуса (см. рис. 2).

Рис. 2. Развертка боковой поверхности

Рис. 3. Измерение угла в радианах

Попробуем найти площадь сектора по имеющимся данным. Сперва введем обозначение: пусть угол при вершине сектора в радианах (см. рис. 3).

С углом при вершине развертки нам придется часто сталкиваться в задачах. Пока же попробуем ответить на вопрос: а не может ли этот угол получиться больше 360 градусов? То есть не получится ли так, что развертка наложится сама на себя? Конечно же, нет. Докажем это математически. Пусть развертка «наложилась» сама на себя. Это означает, что длина дуги развертки больше длины окружности радиуса . Но, как уже было сказано, длина дуги развертки есть длина окружности радиуса . А радиус основания конуса, разумеется, меньше образующей, например, потому, что катет прямоугольного треугольника меньше гипотенузы

Тогда вспомним две формулы из курса планиметрии: длина дуги . Площадь сектора: .

В нашем случае роль играет образующая , а длина дуги равна длине окружности основания конуса, то есть . Имеем:

Окончательно получаем: .

Наряду с площадью боковой поверхности можно найти и площадь полной поверхности. Для этого к площади боковой поверхности надо прибавить площадь основания. Но основание - это круг радиуса , чья площадь по формуле равна .

Окончательно имеем: , где - радиус основания цилиндра, - образующая.

Решим пару задач на приведенные формулы.

Рис. 4. Искомый угол

Пример 1 . Разверткой боковой поверхности конуса является сектор с углом при вершине. Найти этот угол, если высота конуса равна 4 см, а радиус основания равен 3 см (см. рис. 4).

Рис. 5. Прямоугольный треугольник, образующий конус

Первым действием, по теореме Пифагора, найдем образующую: 5 см (см. рис. 5). Далее, мы знаем, что .

Пример 2 . Площадь осевого сечения конуса равна , высота равна . Найти площадь полной поверхности (см. рис. 6).

Сегодня мы расскажем вам о том, как найти образующую конуса, что частенько требуется в школьных задачках по геометрии.

Понятие образующей конуса

Прямой конус — это фигура, которая получается в результате вращения прямоугольного треугольника вокруг одно из его катетов. Основание конуса образует круг. Вертикальное сечение конуса — это треугольник, горизонтальное — круг. Высотой конуса является отрезок, соединяющий вершину конуса с центром основания. Образующей конуса является отрезок, который соединяет вершину конуса с любой точкой на линии окружности основания.

Так как конус образуется вращением прямоугольного треугольника, то получается, что первым катетом такого треугольника является высота, вторым — радиус круга, лежащего в основании, а гипотенузой будет образующая конуса. Нетрудно догадаться, что для расчета длины образующей пригодится теорема Пифагора. А теперь подробнее о том, как найти длину образующей конуса.

Находим образующую

Легче всего понять, как найти образующую, можно на конкретном примере. Допустим, даны такие условия задачи: высота равна 9 см., диаметр круга основания составляет 18 см. Необходимо найти образующую.

Итак, высота конуса (9 см.) - это один из катетов прямоугольного треугольника, с помощью которого был образован данный конус. Второй катет будет являться радиусом круга основания. Радиус — это половина диаметра. Таким образом, делим данный нам диаметр пополам и получаем длину радиуса: 18:2 = 9. Радиус равен 9.

Теперь найти образующую конуса очень легко. Так как она является гипотенузой, то квадрат ее длины будет равен сумме квадратов катетов, то есть сумме квадратов радиуса и высоты. Итак, квадрат длины образующей = 64 (квадрат длины радиуса) + 64 (квадрат длины высоты) = 64x2 = 128. Теперь извлекаем квадратный корень из 128. В итоге получаем восемь корней из двух. Это и будет образующая конуса.

Как видите, ничего сложного в этом нет. Для примера мы взяли простые условия задачи, однако в школьном курсе они могут быть и сложнее. Помните, что для расчета длины образующей вам нужно выяснить радиус круга и высоту конуса. Зная эти данные, найти длину образующей легко.

Тела вращения, изучаемые в школе, - это цилиндр, конус и шар.

Если в задаче на ЕГЭ по математике вам надо посчитать объем конуса или площадь сферы - считайте, что повезло.

Применяйте формулы объема и площади поверхности цилиндра, конуса и шара. Все они есть в нашей таблице. Учите наизусть. Отсюда начинается знание стереометрии.

Иногда неплохо нарисовать вид сверху. Или, как в этой задаче, - снизу.

2. Во сколько раз объем конуса, описанного около правильной четырехугольной пирамиды, больше объема конуса, вписанного в эту пирамиду?

Всё просто - рисуем вид снизу. Видим, что радиус большего круга в раз больше, чем радиус меньшего. Высоты у обоих конусов одинаковы. Следовательно, объем большего конуса будет в раза больше.

Еще один важный момент. Помним, что в задачах части В вариантов ЕГЭ по математике ответ записывается в виде целого числа или конечной десятичной дроби. Поэтому никаких или у вас в ответе в части В быть не должно. Подставлять приближенное значение числа тоже не нужно! Оно обязательно должно сократиться!. Именно для этого в некоторых задачах задание формулируется, например, так: «Найдите площадь боковой поверхности цилиндра, деленную на ».

А где же еще применяются формулы объема и площади поверхности тел вращения? Конечно же, в задаче С2 (16). Мы тоже расскажем о ней.