Алгоритм полного исследования функции. Как исследовать функцию и построить ее график

С некоторых пор в TheBat (непонятно по какой причине) перестает корректно работать встроенная база сертификатов для SSL.

При проверке посты выскакивает ошибка:

Неизвестный сертификат СА
Сервер не представил корневой сертификат в сессии и соответствующий корневой сертификат не найден в адресной книге.
Это соедининение не может быть секретным. Пожалуйста
свяжитесь с администратором вашего сервера.

И предлагается на выбор ответы - ДА / НЕТ. И так каждый раз когда снимаешь почту.

Решение

В этом случае случае нужно заменить стандарт реализации S/MIME и TLS на Microsoft CryptoAPI в настройках TheBat!

Так как мне надо было все файлы объединить в один, то я сначала преобразовал все doc файлы в единый pdf файл (с помощью программы Acrobat), а затем уже через онлайн-конвертер перевёл в fb2. Можно же конвертировать файлы и по отдельности. Форматы могут быть совершенно любые (исходные) и doc, и jpg, и даже zip архив!

Название сайта соответствующее сути:) Онлайн Фотошоп.

Апдейт май 2015

Я нашел еще один замечательный сайт! Еще удобнее и функциональнее для создания абсолютно произвольного коллажа! Это сайт http://www.fotor.com/ru/collage/ . Пользуйтесь на здоровье. И сам буду пользоваться.

Столкнулся в жизни с ремонтом электроплиты. Уже много что делал, много чему научился, но как-то с плитками дела имел мало. Нужна была замена контактов на регуляторах и конфорок. Возник вопрос - как определить диаметр конфорки у электроплиты?

Ответ оказался прост. Не надо ничего мерить, можно спокойной на глаз определить какой вам нужен размер.

Самая маленькая конфорка - это 145 миллиметров (14,5 сантиметров)

Средняя конфорка - это 180 миллиметров (18 сантиметров).

И, наконец, самая большая конфорка - это 225 миллиметров (22,5 сантиметров).

Достаточно на глаз определить размер и понять какого диаметра вам нужна конфорка. Я когда этого не знал - парился с этими размерами, не знал как измерять, по какому краю ориентироваться и т.д. Теперь я мудр:) Надеюсь и вам помог!

В жизни столкнулся с такой задачей. Думаю, что не я один такой.

В данной статье рассмотрим схему исследования функции, а также приведем примеры исследования на экстремумы, монотонность, асимптоты данной функции.

Схема

  1. Область существования (ОДЗ) функции.
  2. Пересечение функции (если имеется) с осями координат, знаки функции, четность, периодичность.
  3. Точки разрыва (их род). Непрерывность. Асимптоты вертикальные.
  4. Монотонность и точки экстремума.
  5. Точки перегиба. Выпуклость.
  6. Исследование функции на бесконечности, на асимптоты: горизонтальные и наклонные.
  7. Построение графика.

Исследование на монотонность

Теорема. Ежели функция g непрерывна на , дифференцированная на (а; b) и g’(x) ≥ 0 (g’(x)≤0) , xє(а; b) , то g возрастающая (убывающая) на .

Пример:

y = 1: 3x 3 - 6: 2x 2 + 5x.

ОДЗ: хєR

y’ = x 2 + 6x + 5.

Найдем промежутки постоянных знаков y’ . Поскольку y’ - элементарная функция, то она может менять знаки только в точках, где она превращается в ноль или не существует. Ее ОДЗ: хєR .

Найдем точки, производная в которых равняется 0 (нулю):

y’ = 0;

x = -1; -5.

Итак, y растущая на (-∞; -5] и на [-1; +∞), y нисходящая на .

Исследование на экстремумы

Т. x 0 именуют точкой максимума (max) на множестве А функции g тогда, когда принимается в этой точке функцией значение наибольшее g(x 0) ≥ g(x), xєА .

Т. x 0 именуют точкой минимума (min) функции g на множестве А тогда, когда принимается в этой точке функцией значение наименьшее g(x 0) ≤ g(x), xєА.

На множестве А точки максимума (max) и минимума (min) именуются точками экстремума g . Такие экстремумы еще называют абсолютными экстремумами на множестве .

Если x 0 - экстремума точка функции g в некотором своем округе, то x 0 именуется точкой локального или местного экстремума (max или min) функции g.

Теорема (условие необходимое). Если x 0 - точка экстремума (локального) функции g , то производная не существует или равна в этой т. 0 (нулю).

Определение. Критическими именуют точки с несуществующей или равной 0 (нулю) производной. Именно данные точки подозрительны на экстремум.

Теорема (условие достаточное № 1). Если функция g непрерывна в некотором округе т. x 0 и знак меняет чрез эту точку при переходе производная, то данная точка есть т. экстремума g .

Теорема (условие достаточное № 2). Пускай функция в некотором округе точки дифференцируема дважды и g’ = 0, а g’’ > 0 (g’’ < 0) , тогда эта точка есть точкой максимума (max) или минимума (min) функции.

Исследование на выпуклость

Функцию называют выпуклой вниз (или вогнутой) на интервале (а, b) тогда, когда график функции располагается не выше секущей на промежутке для любых x с (а, b) , которая проходит чрез эти точки.

Функция будет выпуклой строго вниз на (а, b) , если - график лежит ниже секущей на промежутке.

Функцию называют выпуклой вверх (выпуклой) на промежутке (а, b) , если для любых точек с (а, b) график функции на промежутке лежит не ниже секущей, проходящей через абсциссы в этих точках .

Функция будет строго выпуклой вверх на (а, b ), если - график на промежутке лежит выше секущей.

Если функция в некотором округе точки непрерывна и через т. x 0 при переходе функция изменяет выпуклость то эта точка именуется точкой перегиба функции.

Исследование на асимптоты

Определение. Прямую называют асимптотой g(x) , если при бесконечном удалении от начала координат к ней приближается точка графика функции: d(M,l).

Асимптоты могут быть вертикальные, горизонтальные и наклонные.

Вертикальная прямая с уравнением x = x 0 будет асимптотой вертикальной графика функции g , если в т. x 0 бесконечный разрыв, то есть хотя бы одна левая или правая граница в этой точке - бесконечность.

Исследование функции на отрезке на значение наименьшее и наибольшее

Если функция непрерывна на , то по теореме Вейерштрасса существует значение наибольшее и значение наименьшее на этом отрезке, то есть существуют точки, которые принадлежат такие, что g(x 1) ≤ g(x) < g(x 2), x 2 є . Из теорем про монотонность и экстремумы получаем следующую схему исследования функции на отрезке на наименьшее и наибольшее значение.

План

  1. Найти производную g’(x) .
  2. Искать значение функции g в этих точках и на концах отрезка.
  3. Найденные значения сравнить и выбрать наименьшее и наибольшее.

Замечание. Если нужно произвести исследование функции на конечном интервале (а, b) , или на бесконечном (-∞; b); (-∞; +∞) на max и min значение, то в плане вместо значений функции на концах промежутка ищут соответствующие односторонние границы: вместо f(a) ищут f(a+) = limf(x) , вместо f(b) ищут f(-b) . Так можно найти ОДЗ функции на промежутке, потому что абсолютные экстремумы не обязательно существуют в данном случае.

Применение производной к решению прикладных задач на экстремум некоторых величин

  1. Выражают данную величину через другие величины из условия задачи так, чтобы она была функцией только от одной переменной (если это возможно).
  2. Определяют промежуток изменения этой переменной.
  3. Проводят исследование функции на промежутке на max и min значения.

Задача. Нужно построить площадку прямоугольной формы, использовав а метров сетки, у стены так, чтобы с одной стороны она прилегала к стене, а с остальных трех была ограждена сеткой. При каком соотношении сторон площадь такой площадки будет наибольшей?

S = xy - функция 2 переменных.

S = x(a - 2x) - функция 1-й переменной; x є .

S = ax - 2x 2 ; S" = a - 4x = 0, xєR, x = a: 4.

S(a: 4) = a 2: 8 - наибольшее значение;

S(0) =0.

Найдем другую сторону прямоугольника: у = a: 2.

Соотношение сторон: y: x = 2.

Ответ. Наибольшая площадь будет равна a 2 /8 , если сторона, которая параллельна стене, в 2 раза больше другой стороны.

Исследование функции. Примеры

Пример 1

Имеется y=x 3: (1-x) 2 . Произвести исследование.

  1. ОДЗ: хє(-∞; 1) U (1; ∞).
  2. Общего вида функция (ни четная, ни нечетная), относительно точки 0 (нуль) не симметрична.
  3. Знаки функции. Функция элементарная, поэтому может менять знак только в точках, где она равна 0 (нулю), или не существует.
  4. Функция элементарная, поэтому непрерывная на ОДЗ: (-∞; 1) U (1; ∞).

Разрыв: х = 1;

limx 3: (1- x) 2 = ∞ - Разрыв 2-го рода (бесконечный), поэтому есть вертикальная асимптота в точке 1;

х = 1 - уравнение асимптоты вертикальной.

5. y’ = x 2 (3 - x) : (1 - x) 3 ;

ОДЗ (y’): x ≠ 1;

х = 1 - точка критическая.

y’ = 0;

0; 3 - точки критические.

6. y’’ = 6x: (1 - x) 4 ;

Критические т.: 1, 0;

x = 0 - т. перегиба, y(0) = 0.

7. limx 3: (1 - 2x + x 2) = ∞ - нет горизонтальной асимптоты, но может быть наклонная.

k = 1 - число;

b = 2 - число.

Следовательно, есть асимптота наклонная y = x + 2 на + ∞ и на - ∞.

Пример 2

Дано y = (x 2 + 1) : (x - 1). Произвести и сследование. Построить график.

1. Область существования - вся числовая прямая, кроме т. x = 1 .

2. y пересекает OY (если это возможно) в т. (0;g(0)) . Находим y(0) = -1 - т. пересечения OY .

Точки пересечения графика с OX находим, решив уравнение y = 0 . Уравнение корней действительных не имеет, поэтому эта функция не пересекает OX .

3. Функция непериодическая. Рассмотрим выражение

g(-x) ≠ g(x), и g(-x) ≠ -g(x) . Это означает, что это общего вида функция (ни четная, ни нечетная).

4. Т. x = 1 разрыв имеет второго рода. Во всех остальных точках функция непрерывна.

5. Исследование функции на экстремум:

(x 2 - 2x - 1) : (x - 1) 2 = y"

и решим уравнение y" = 0.

Итак, 1 - √2, 1 + √2, 1 - точки критические или точки возможного экстремума. Эти точки разбивают числовую прямую на четыре интервала.

На каждом интервале производная имеет определенный знак, который можно установить методом интервалов или вычисления значений производной в отдельных точках. На интервалах (-∞; 1 - √2 ) U (1 + √2 ; ∞) , положительная производная, значит, функция растет; если (1 - √2 ; 1) U (1; 1 + √2 ) , то функция убывает, потому что на этих интервалах производная отрицательная. Через т. x 1 при переходе (движение следует слева направо) изменяет производная знак с "+" на "-", поэтому, в этой точке есть локальный максимум, найдем

y max = 2 - 2√2 .

При переходе через x 2 изменяет производная знак с "-" на "+", поэтому, в этой точке есть локальный минимум, причем

y mix = 2 + 2√2.

Т. x = 1 не т. экстремума.

6. 4: (x - 1) 3 = y"".

На (-∞; 1 ) 0 > y"" , следственно, на этом интервале кривая выпуклая; если xє(1 ; ∞) - кривая вогнута. В точке 1 не определена функция, поэтому эта точка не точка перегиба.

7. Из результатов пункта 4 следует, что x = 1 - асимптота вертикальная кривой.

Горизонтальные асимптоты отсутствуют.

x + 1 = y - асимптота наклонная данной кривой. Других асимптот нет.

8. Учитывая проведенные исследования, строим график (см. рисунок выше).

Если в задаче необходимо произвести полное исследование функции f (x) = x 2 4 x 2 - 1 с построением его графика, тогда рассмотрим этот принцип подробно.

Для решения задачи данного типа следует использовать свойства и графики основных элементарных функций. Алгоритм исследования включает в себя шаги:

Yandex.RTB R-A-339285-1

Нахождение области определения

Так как исследования проводятся на области определения функции, необходимо начинать с этого шага.

Пример 1

Заданный пример предполагает нахождение нулей знаменателя для того, чтобы исключить их из ОДЗ.

4 x 2 - 1 = 0 x = ± 1 2 ⇒ x ∈ - ∞ ; - 1 2 ∪ - 1 2 ; 1 2 ∪ 1 2 ; + ∞

В результате можно получить корни, логарифмы, и так далее. Тогда ОДЗ можно искать для корня четной степени типа g (x) 4 по неравенству g (x) ≥ 0 , для логарифма log a g (x) по неравенству g (x) > 0 .

Исследование границ ОДЗ и нахождение вертикальных асимптот

На границах функции имеются вертикальные асимптоты, когда односторонние пределы в таких точках бесконечны.

Пример 2

Для примера рассмотрим приграничные точки, равные x = ± 1 2 .

Тогда необходимо проводить исследование функции для нахождения одностороннего предела. Тогда получаем, что: lim x → - 1 2 - 0 f (x) = lim x → - 1 2 - 0 x 2 4 x 2 - 1 = = lim x → - 1 2 - 0 x 2 (2 x - 1) (2 x + 1) = 1 4 (- 2) · - 0 = + ∞ lim x → - 1 2 + 0 f (x) = lim x → - 1 2 + 0 x 2 4 x - 1 = = lim x → - 1 2 + 0 x 2 (2 x - 1) (2 x + 1) = 1 4 (- 2) · (+ 0) = - ∞ lim x → 1 2 - 0 f (x) = lim x → 1 2 - 0 x 2 4 x 2 - 1 = = lim x → 1 2 - 0 x 2 (2 x - 1) (2 x + 1) = 1 4 (- 0) · 2 = - ∞ lim x → 1 2 - 0 f (x) = lim x → 1 2 - 0 x 2 4 x 2 - 1 = = lim x → 1 2 - 0 x 2 (2 x - 1) (2 x + 1) = 1 4 (+ 0) · 2 = + ∞

Отсюда видно, что односторонние пределы являются бесконечными, значит прямые x = ± 1 2 - вертикальные асимптоты графика.

Исследование функции и на четность или нечетность

Когда выполняется условие y (- x) = y (x) , функция считается четной. Это говорит о том, что график располагается симметрично относительно О у. Когда выполняется условие y (- x) = - y (x) , функция считается нечетной. Значит, что симметрия идет относительно начала координат. При невыполнении хотя бы одного неравенства, получаем функцию общего вида.

Выполнение равенства y (- x) = y (x) говорит о том, что функция четная. При построении необходимо учесть, что будет симметричность относительно О у.

Для решениянеравенства применяются промежутки возрастания и убывания с условиями f " (x) ≥ 0 и f " (x) ≤ 0 соответственно.

Определение 1

Стационарные точки – это такие точки, которые обращают производную в ноль.

Критические точки - это внутренние точки из области определения, где производная функции равняется нулю или не существует.

При решении необходимо учитывать следующие замечания:

  • при имеющихся промежутках возрастания и убывания неравенства вида f " (x) > 0 критические точки в решение не включаются;
  • точки, в которых функция определена без конечной производной, необходимо включать в промежутки возрастания и убывания (к примеру, y = x 3 , где точка х = 0 делает функцию определенной, производная имеет значение бесконечности в этой точке, y " = 1 3 · x 2 3 , y " (0) = 1 0 = ∞ , х = 0 включается в промежуток возрастания);
  • во избежание разногласий рекомендовано пользоваться математической литературой, которая рекомендована министерством образования.

Включение критических точек в промежутки возрастания и убывания в том случае, если они удовлетворяют области определения функции.

Определение 2

Для определения промежутков возрастания и убывания функции необходимо найти :

  • производную;
  • критические точки;
  • разбить область определения при помощи критических точек на интервалы;
  • определить знак производной на каждом из промежутков, где + является возрастанием, а - является убыванием.

Пример 3

Найти производную на области определения f " (x) = x 2 " (4 x 2 - 1) - x 2 4 x 2 - 1 " (4 x 2 - 1) 2 = - 2 x (4 x 2 - 1) 2 .

Решение

Для решения нужно:

  • найти стационарные точки, данный пример располагает х = 0 ;
  • найти нули знаменателя, пример принимает значение ноль при x = ± 1 2 .

Выставляем точки на числовой оси для определения производной на каждом промежутке. Для этого достаточно взять любую точку из промежутка и произвести вычисление. При положительном результате на графике изображаем + , что означает возрастание функции, а - означает ее убывание.

Например, f " (- 1) = - 2 · (- 1) 4 - 1 2 - 1 2 = 2 9 > 0 , значит, первый интервал слева имеет знак + . Рассмотрим на числовой прямой.

Ответ:

  • происходит возрастание функции на промежутке - ∞ ; - 1 2 и (- 1 2 ; 0 ] ;
  • происходит убывание на промежутке [ 0 ; 1 2) и 1 2 ; + ∞ .

На схеме при помощи + и - изображается положительность и отрицательность функции, а стрелочки – убывание и возрастание.

Точки экстремума функции – точки, где функция определена и через которые производная меняет знак.

Пример 4

Если рассмотреть пример, где х = 0 , тогда значение функции в ней равняется f (0) = 0 2 4 · 0 2 - 1 = 0 . При перемене знака производной с + на - и прохождении через точку х = 0 , тогда точка с координатами (0 ; 0) считается точкой максимума. При перемене знака с - на + получаем точку минимума.

Выпуклость и вогнутость определяется при решении неравенств вида f "" (x) ≥ 0 и f "" (x) ≤ 0 . Реже используют название выпуклость вниз вместо вогнутости, а выпуклость вверх вместо выпуклости.

Определение 3

Для определения промежутков вогнутости и выпуклости необходимо:

  • найти вторую производную;
  • найти нули функции второй производной;
  • разбить область определения появившимися точками на интервалы;
  • определить знак промежутка.

Пример 5

Найти вторую производную из области определения.

Решение

f "" (x) = - 2 x (4 x 2 - 1) 2 " = = (- 2 x) " (4 x 2 - 1) 2 - - 2 x 4 x 2 - 1 2 " (4 x 2 - 1) 4 = 24 x 2 + 2 (4 x 2 - 1) 3

Находим нули числителя и знаменателя, где на примере нашего примера имеем, что нули знаменателя x = ± 1 2

Теперь необходимо нанести точки на числовую ось и определить знак второй производной из каждого промежутка. Получим, что

Ответ:

  • функция является выпуклой из промежутка - 1 2 ; 1 2 ;
  • функция является вогнутой из промежутков - ∞ ; - 1 2 и 1 2 ; + ∞ .

Определение 4

Точка перегиба – это точка вида x 0 ; f (x 0) . Когда в ней имеется касательная к графику функции, то при ее прохождении через x 0 функция изменяет знак на противоположный.

Иначе говоря, это такая точка, через которую проходит вторая производная и меняет знак, а в самих точках равняется нулю или не существует. Все точки считаются областью определения функции.

В примере было видно, что точки перегиба отсутствуют, так как вторая производная изменяет знак во время прохождения через точки x = ± 1 2 . Они, в свою очередь, в область определения не входят.

Нахождение горизонтальных и наклонных асимптот

При определении функции на бесконечности нужно искать горизонтальные и наклонные асимптоты.

Определение 5

Наклонные асимптоты изображаются при помощи прямых, заданных уравнением y = k x + b , где k = lim x → ∞ f (x) x и b = lim x → ∞ f (x) - k x .

При k = 0 и b , не равному бесконечности, получаем, что наклонная асимптота становится горизонтальной .

Иначе говоря, асимптотами считают линии, к которым приближается график функции на бесконечности. Это способствует быстрому построению графика функции.

Если асимптоты отсутствуют, но функция определяется на обеих бесконечностях, необходимо посчитать предел функции на этих бесконечностях, чтобы понять, как себя будет вести график функции.

Пример 6

На примере рассмотрим, что

k = lim x → ∞ f (x) x = lim x → ∞ x 2 4 x 2 - 1 x = 0 b = lim x → ∞ (f (x) - k x) = lim x → ∞ x 2 4 x 2 - 1 = 1 4 ⇒ y = 1 4

является горизонтальной асимптотой. После исследования функции можно приступать к ее построению.

Вычисление значения функции в промежуточных точках

Чтобы построение графика было наиболее точным, рекомендовано находить несколько значений функции в промежуточных точках.

Пример 7

Из рассмотренного нами примера необходимо найти значения функции в точках х = - 2 , х = - 1 , х = - 3 4 , х = - 1 4 . Так как функция четная, получим, что значения совпадут со значениями в этих точках, то есть получим х = 2 , х = 1 , х = 3 4 , х = 1 4 .

Запишем и решим:

F (- 2) = f (2) = 2 2 4 · 2 2 - 1 = 4 15 ≈ 0 , 27 f (- 1) - f (1) = 1 2 4 · 1 2 - 1 = 1 3 ≈ 0 , 33 f - 3 4 = f 3 4 = 3 4 2 4 3 4 2 - 1 = 9 20 = 0 , 45 f - 1 4 = f 1 4 = 1 4 2 4 · 1 4 2 - 1 = - 1 12 ≈ - 0 , 08

Для определения максимумов и минимумов функции, точек перегиба, промежуточных точек необходимо строить асимптоты. Для удобного обозначения фиксируются промежутки возрастания, убывания, выпуклость, вогнутость. Рассмотрим на рисунке, изображенном ниже.

Необходимо через отмеченные точки проводить линии графика, что позволит приблизить к асимптотам, следуя стрелочкам.

На этом заканчивается полное исследование функции. Встречаются случаи построения некоторых элементарных функций, для которых применяют геометрические преобразования.

Если вы заметили ошибку в тексте, пожалуйста, выделите её и нажмите Ctrl+Enter

Инструкция

Найдите область определения функции. Например, функция sin(x) определена на всем интервале от -∞ до +∞, а функция 1/x - от -∞ до +∞ за исключением точки x = 0.

Определите области непрерывности и точки разрыва. Обычно функция непрерывна в той же самой области, где она определена. Чтобы обнаружить разрывы, нужно вычислить при приближении аргумента к изолированным точкам внутри области определения. Например, функция 1/x стремится к бесконечности, когда x→0+, и к минус бесконечности, когда x→0-. Это значит, что в точке x = 0 она имеет разрыв второго рода.
Если пределы в точке разрыва конечны, но не равны, то это разрыв первого рода. Если же они равны, то функция считается непрерывной, хотя в изолированной точке она и не определена.

Найдите вертикальные асимптоты, если они есть. Здесь вам помогут вычисления предыдущего шага, поскольку вертикальная асимптота практически всегда находится в точке разрыва второго рода. Однако иногда из области определения исключены не отдельные точки, а целые интервалы точек, и тогда вертикальные асимптоты могут располагаться на краях этих интервалов.

Проверьте, обладает ли функция особыми свойствами: четностью, нечетностью и периодичностью.
Функция будет четной, если для любого x в области определения f(x) = f(-x). Например, cos(x) и x^2 - четные функции.

Периодичность - свойство, говорящее о том, что есть некое число T, называемое периодом, что для любого x f(x) = f(x + T). Например, все основные тригонометрические функции (синус, косинус, тангенс) - периодические.

Найдите точки . Для этого вычислите производную от заданной функции и найдите те значения x, где она обращается в ноль. Например, функция f(x) = x^3 + 9x^2 -15 имеет производную g(x) = 3x^2 + 18x, которая обращается в ноль при x = 0 и x = -6.

Чтобы определить, какие точки экстремума являются максимумами, а какие минимумами, отследите изменение знаков производной в найденных нулях. g(x) меняет знак с плюса в точке x = -6, а в точке x = 0 обратно с минуса на плюс. Следовательно, функция f(x) в первой точке имеет , а во второй - минимум.

Таким образом, вы нашли и области монотонности: f(x) монотонно возрастает на промежутке -∞;-6, монотонно убывает на -6;0 и снова возрастает на 0;+∞.

Найдите вторую производную. Ее корни покажут, где график заданной функции будет выпуклым, а где - вогнутым. Например, второй производной от функции f(x) будет h(x) = 6x + 18. Она обращается в ноль при x = -3, меняя при этом знак с минуса на плюс. Следовательно, график f(x) до этой точки будет выпуклым, после нее - вогнутым, а сама эта точка будет точкой перегиба.

У функции могут быть и другие асимптоты, кроме вертикальных, но только в том случае, если в ее область определения входит . Чтобы их найти, вычислите предел f(x), когда x→∞ или x→-∞. Если он конечен, то вы нашли горизонтальную асимптоту.

Наклонная асимптота - прямая вида kx + b. Чтобы найти k, вычислите предел f(x)/x при x→∞. Чтобы найти b - предел (f(x) – kx) при том же x→∞.